
Mixture densities and the EM algorithm

• Mixture density withK components: p(x;Θ) =
K∑
k=1

p(x|k)p(k)

{
p(x|k) component densities

p(k) = πk mixture proportions.

• Ex: Gaussian mixture: x|k ∼ N (x;µk,Σk). Mixture parameters: Θ = {πk,µk,Σk}Kk=1.

• Maximum likelihood estimation of Gaussian mixture parameters: given a sample X = {xn}Nn=1:

maxΘ L(Θ;X ) =
∑N

n=1 log p(xn;Θ) =
∑N

n=1 log
(∑K

k=1 p(x|k)p(k)
)
.

• L cannot be maximized in closed form over Θ; it needs an iterative optimization algorithm.
Many such algorithms exist (such as gradient descent), but there is a specially convenient one
for mixture models (and more generally, for maximum likelihood with missing data).

• Expectation-Maximization (EM) algorithm: for Gaussian mixtures:

– E step: given the current parameter values Θ, compute the posterior probability of com-
ponent k given data point xn (for each k = 1, . . . , K and n = 1, . . . , N):

znk = p(k|xn;Θ) =
p(xn|k)p(k)
p(xn;Θ)

=
πk|2πΣk|−1/2 exp

(
−1

2
(xn − µk)

TΣ−1k (xn − µk)
)∑K

k′=1 πk′|2πΣk′|−1/2 exp
(
−1

2
(xn − µk′)

TΣ−1k′ (xn − µk′)
) ∈ (0, 1).

– M step: given the posterior probabilities, estimate the parameters Θ: for k = 1, . . . , K:

πk =
1

N

N∑
n=1

znk µk =

∑N
n=1 znkxn∑N
n=1 znk

Σk =

∑N
n=1 znk(xn − µk)(xn − µk)

T∑N
n=1 znk

.

Similar to k-means, where the assignment and centroid steps correspond to the E and M steps.
But in EM the assignments are soft (znk ∈ [0, 1]), while in k-means they are hard (znk ∈ {0, 1}).

• If we knew which component xn came from for each n = 1, . . . , N , we’d not need the E step:
a single M step that estimates each component’s parameters on its set of points would suffice.
This was the case in classification (where x|Ck is Gaussian): we were given (xn, yn).

• Each EM step increases L or leaves it unchanged, but it takes an infinite number of iterations
to converge. In practice, we stop when the parameters don’t change much, or when the number
of iterations reaches a limit.

• EM converges to a local optimum that depends on the initial value of Θ. Usually from k-means?.

• User parameter: number of clustersK. Output: posterior probabilities {p(k|xn)} and {πk,µk,Σk}Kk=1.

• Parametric clustering : K clusters, assumed Gaussian.

• The fundamental advantage of Gaussian mixtures over k-means for clustering is that we can
model the uncertainty in the assignments (particularly useful for points near cluster bound-
aries), and the clusters can be elliptical and have different proportions.

k-means EM for Gaussian mixtures

assignments znk hard soft, p(k|xn)
probability model? no yes
number of iterations finite infinite
parameters centroids {µk}Kk=1 {πk,µk,Σk}Kk=1
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