
10 Decision trees

• Applicable to classification and regression.

• Can use continuous and discrete (categorical) features. x ∈ R or x ∈ {red,green,blue}.

• Efficient at test time:

– An input instance follows a single root-leaf path in the tree, ignoring the rest of it.

– This path (and the whole tree) may not even use all the features in the training set.

• A decision tree is a model that (as long as it is not too big) can be interpreted by people (unlike
black-box models such as neural nets):

– We can inspect the tree visually regardless of the dimensionality of the feature vector.

– We can track the root-leaf path followed by a particular input instance to understand how
the tree made its decision.

– The tree can be transformed into a set of IF-THEN rules.

• Widely used in practice, sometimes preferred over more accurate but less interpretable models.

• They define class regions as a sequence of recursive splits.

• The decision tree consists of:

– Internal decision nodes, each having ≥ 2 children. Decision node m selects one of its
children based on a test (a split) applied to the input x.

∗ Continuous feature xd: “go right if xd > sm” for some sm ∈ R.
∗ Discrete feature xd: n-way split for the n possible values of xd.

– Leaves, each containing a value (class label or output value y). Instances xn falling in the
same leaf should have identical (or similar) output values yn.

∗ Classification: class label y ∈ {1, . . . , K} (or proportion of each class p1, . . . , pK).

∗ Regression: numeric value y ∈ R (average of the outputs for the leaf’s instances).

The predicted output for an instance x is obtained by following a path from the root to a leaf.
In the best case (balanced tree) for binary trees, the path has length log2 L if there are L leaves.

• Having learned a tree, we discard the training set {(xn, yn)}Nn=1 and keep only the tree nodes
(and associated split and output values). The resulting tree may be considered:

– Nonparametric: if the tree is very big, having Θ(N) nodes if each leaf represents one (or
a few) instances. Still, inference in the tree is much faster than, say, in kernel regression
or k-nearest-neighbors classification (no need to scan the whole training set).

– Parametric: if the tree is much smaller than the training set N .

In practice, the size of the tree depends on the application.

37



Univariate trees
x

 2




x

1


w

10


w

20


x

1

>w


10


x

2

>w


20


Yes

No


No
Yes


C

1


C

1


C

1


C

2


C

2


• The test at node m compares one feature with a threshold: “xd > sm” for some d ∈ {1, . . . , D}
and sm ∈ R. This defines a binary split into two regions: {x ∈ RD: xd ≤ sm} and {x ∈
RD: xd > sm}. The overall tree defines box-shaped, axis-aligned regions in input space.

Simplest and most often used. More complex tests exist, e.g. “wT
mx > sm”, which define oblique regions (multivariate trees).

• With discrete features, the number of children equals the number nd of values the feature can
take, and the test selects the child corresponding to the value of xd (n-way split).
Ex: xd ∈ {red, green, blue} ⇒ nd = 3 children.

• Tree induction is learning the tree from a training set {(xn, yn)}Nn=1, i.e., determining its nodes
and structure:

– For each internal node, its test (feature d ∈ {1, . . . , D} and threshold sm).

– For each leaf, its output value y.

• For a given sample, many (sufficiently big) trees exist that code it with zero error. We want to
find the smallest such tree. This is NP-hard so an approximate, greedy algorithm is used: Fig. 9.3

pseudocode

– Starting at the root with the entire training set, select a best split according to a purity
criterion: (Nleftϕleft + Nrightϕright)/(Nleft + Nright), where N• is the number of instances
going to child •. Associate each child with the subset of instances that fall in it.

– Continue splitting each child (with its subset of the training set) recursively until each
child is pure (hence a leaf) and no more splits are necessary.

– Prevent overfitting by either early stopping or pruning.

Ex. algorithms: CART, ID3, C4.5.

38



Classification trees

• Purity criterion: a node is pure if it contains instances of the
same class. Consider a node and all the training set instances
that reach it, and call pk the proportion of instances of class
k, for k = 1, . . . , K (so pk ≥ 0 and

∑K
k=1 pk = 1). We can

measure impurity as the entropy of p = (p1, . . . , pK): ϕ(p) =
−
∑K

k=1 pk log2 pk (where 0 log2 0 ≡ 0?). This is maximum if
p1 = · · · = pK = 1

K
, and minimum (“pure”) if one pk = 1

and the rest are 0?.
Other measures satisfying those conditions are possible: Gini index ϕ(p) =∑K

i̸=j pipj =
∑K

i=1 pi(1− pi), misclassification error ϕ(p) = 1−max(p1, . . . , pK).
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

e
n
tr

o
p
y
=

−
p
*
lo

g
2
(p

)−
(1

−
p
)*

lo
g

2
(1

−
p
)

• If a node is pure, i.e., all its instances are of the same class k, there is no need to split it. It
becomes a leaf with output value k.
We can also store the proportions p = (p1, . . . , pK) in the node (e.g. to compute risks).

• If a node m is not pure, we split it. We evaluate (Nleftϕleft +Nrightϕright)/(Nleft +Nright) for all
possible features d = 1, . . . , D and all possible split thresholds sm for each feature, and pick the
split with minimum impurity.

– If the number of instances that reach nodem isNm, there are areNm−1 possible thresholds
(the midpoints between consecutive values of xd, assuming we have sorted them).

– For discrete features, there is no threshold but an n-way split.

Regression trees

• Purity criterion: the squared error E(g) =
∑

n∈node (yn − g)2 (where g ∈ R) is minimal when
g is the mean of the yn values?. Then ϕ = E(g) is the variance of the yn values at a node.
If there is much noise or outliers, it is preferable to set g to the median of the yn values.

• We consider a node to be pure if E ≤ θ for a user threshold θ > 0. In that case, we do not
split it. It becomes a leaf with output value g.

• If a node m is not pure, we split it. We evaluate all possible features d = 1, . . . , D and all
possible split thresholds sm for each feature and pick the split with minimum impurity (= sum
of the variances E of each of the children), as in the classification case.

• Rather than assigning a constant output value to a leaf, we can assign it a regression function
(e.g. linear), as in a running-mean smoother.

Early stopping and pruning

• Growing the tree until each leaf is pure will produce a large tree with high variance (sensitive
to the training sample) that will overfit when there is noise.
How to learn smaller trees that generalize better to unseen data?

• Early stopping : we stop splitting if the impurity is below a user threshold θ > 0.
θ ↓ low bias, high variance, large tree; θ ↑ high bias, low variance, small tree.

• Pruning : we grow the tree in full until all leaves are pure and the training error is zero. Then,
we find subtrees that cause overfitting and prune them.
Keep aside a subset from the training set (“pruning set”). For each possible subtree, try replacing it with a leaf node labeled with
the training instances covered by the subtree. If the leaf node performs no worse than the subtree on the pruning set, we prune the
subtree and keep the leaf node because the additional complexity of the subtree is not justified; otherwise, we keep the subtree.

39



• Pruning is slower than early stopping but it usually leads to trees that generalize better.
An intuitive reason why is as follows. In the greedy algorithm used to grow the tree, once we make a decision at a given node (to
select a split) we never backtrack and try a different, maybe better, possibility.

0 1 2 3 4 5 6 7 8
−2

0

2

4
θ

r
 = 0.5

0 1 2 3 4 5 6 7 8
−2

0

2

4
θ

r
 = 0.2

0 1 2 3 4 5 6 7 8
−2

0

2

4
θ

r
 = 0.05

x < 
3.16


x < 
1.36


Yes
 No


No
Yes


1.37
 -1.35


1.86


x < 
3.16


x < 
1.36


Yes
 No


2.20


x < 
5
.96


No
Yes


1.37
 -1.35


No
Yes


0.9
 2.40


Yes
 No


x < 
6.91


x < 
3.16


x < 
1.36


Yes
 No


2.20


x < 
5
.96


No
Yes


-1.35


No
Yes


2.40


Yes
 No


x < 
6.91
x 
< 0.7
6


No
Yes


1.15
 1.80


No
Yes


1.20
 0.60


x < 
6.31


Rule extraction from trees

• A decision tree does its own feature extraction: the final tree may not use all the D features.

• Features closer to the root may be more important globally.

• Path root ⇝ leaf = conjunction of tests. This and the leaf’s output value give a rule.

• The set of extracted rules allows us to extract knowledge from the dataset.

R1: IF (age > 38.5) AND (years-in-job > 2.5) THEN y = 0.8
R2: IF (age > 38.5) AND (years-in-job ≤ 2.5) THEN y = 0.6
R3: IF (age ≤ 38.5) AND (job-type = ‘A’) THEN y = 0.4
R4: IF (age ≤ 38.5) AND (job-type = ‘B’) THEN y = 0.3
R5: IF (age ≤ 38.5) AND (job-type = ‘C’) THEN y = 0.2

x

1 


> 38.5


x

2 


> 2.5


Yes
 No


No
Yes


0.8
 0.6


x

4


'A'
 'C'
'B'


0.2
0.3
0.4


x

1 


: Age


x

2

 : Years in job


x

3

 : Gender


x

4
 


: Job type


40


	1 Introduction
	2 Supervised learning: classification & regression
	3 Bayesian decision theory
	4 Univariate parametric methods
	5 Multivariate parametric methods
	6 Bias and variance of an estimator
	7 Nonparametric methods
	8 Clustering
	9 Dimensionality reduction and feature selection
	10 Decision trees
	11 Ensemble models: combining multiple learners
	12 Linear discrimination
	13 Multilayer perceptrons (artificial neural nets)
	14 Radial basis function networks
	15 Kernel machines (support vector machines, SVMs)
	16 Graphical models
	17 Discrete Markov models and hidden Markov models
	18 Reinforcement learning



