
Nonparametric density estimation

• Given a sample X = {xn}Nn=1 drawn iid from an unknown density, we want to construct an
estimator p(x) of the density.

• Histogram (consider first x ∈ R): split the real line into bins [x0 +mh, x0 + (m+ 1)h] of width
h for m ∈ Z, and count points in each bin:

p(x) =
1

Nh
(number of xn in the same bin as x) x ∈ R.

– We need to select the bin width h and the origin x0.

– x0 has a small but annoying effect on the histogram (near bin boundaries).

– h controls the histogram smoothness: spiky if h ↓ and smooth if h ↑.
– p(x) is discontinuous at bin boundaries.

– We don’t have to retain the training set once we have computed the counts.

– They generalize to D dimensions, but are practically useful only for D ≲ 2
In D dimensions, it requires an exponential number of bins, most of which are empty.

• Kernel density estimate (Parzen windows): generalization of histograms to define smooth,
multivariate density estimates. Place a kernel K(·) on each data point and sum them:

p(x) =
1

NhD

N∑
n=1

K

(
x− xn

h

)
x ∈ RD “sum of bumps”.

– K must satisfy K(x) ≥ 0 ∀x ∈ RD and
∫
RK(x) dx = 1. Typic. K is Gaussian or uniform.

Gaussian: K
(

x−xn
h

)
= (2π)−D/2 exp

(
− 1

2
∥(x− xn)/h∥2

)
. The uniform kernel gives a histogram without an origin x0.

– Only parameter: the bandwidth h > 0. The KDE is spiky if h ↓, smooth if h ↑.
The KDE is not very sensitive to the choice of K.

– p(x) is continuous and differentiable if K is continuous and differentiable.

– In practice, can take K((x− xn)/h) = 0 if ∥x− xn∥ > 3h to simplify the calculation.
We still need to find the samples xn that satisfy ∥x− xn∥ ≤ 3h (neighbors at distance ≤ 3h).

– Also possible to define a different bandwidth hn for each data point xn (adaptive KDE ).

– The KDE quality degrades as the dimension D increases (no matter how h is chosen).
Could be improved by using a full covariance Σn per point, but it is preferable to use a mixture with K < N components.

• k-nearest-neighbor density estimate: p(x) =
k

2N

1

dk(x)
for x ∈ RD, where dk(x) = (Euclidean)

distance of x to its kth nearest sample in X .

– Like using a KDE with an adaptive bandwidth h = 2dk(x).
Instead of fixing h and counting how many samples fall in the bin, we fix k and compute the bin size containing k samples.

– Only parameter: the number of nearest neighbors k ≥ 1.

– p(x) has a discontinuous derivative. It does not integrate to 1 so it is not a pdf.
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Naive estimator: h = 2
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Kernel estimator: h = 1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

h = 0.5

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

h = 0.25

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

k−nn estimator: k = 5
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