Nonparametric density estimation

- Given a sample $\mathcal{X} = {\mathbf{x}_n}_{n=1}^N$ drawn iid from an unknown density, we want to construct an estimator $p(\mathbf{x})$ of the density.
- *Histogram* (consider first $x \in \mathbb{R}$): split the real line into bins $[x_0 + mh, x_0 + (m+1)h]$ of width h for $m \in \mathbb{Z}$, and count points in each bin:

$$p(x) = \frac{1}{Nh}$$
 (number of x_n in the same bin as x) $x \in \mathbb{R}$.

- We need to select the bin width h and the origin x_0 .
- $-x_0$ has a small but annoying effect on the histogram (near bin boundaries).
- -h controls the histogram smoothness: spiky if $h \downarrow$ and smooth if $h \uparrow$.
- p(x) is discontinuous at bin boundaries.
- We don't have to retain the training set once we have computed the counts.
- They generalize to D dimensions, but are practically useful only for $D \lesssim 2$ In D dimensions, it requires an exponential number of bins, most of which are empty.
- Kernel density estimate (Parzen windows): generalization of histograms to define smooth, multivariate density estimates. Place a kernel $K(\cdot)$ on each data point and sum them:

$$p(\mathbf{x}) = \frac{1}{Nh^D} \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}_n}{h}\right) \qquad \mathbf{x} \in \mathbb{R}^D \qquad \text{``sum of bumps''}.$$

- K must satisfy $K(\mathbf{x}) \ge 0 \ \forall \mathbf{x} \in \mathbb{R}^D$ and $\int_{\mathbb{R}} K(\mathbf{x}) \, d\mathbf{x} = 1$. Typic. K is Gaussian or uniform. Gaussian: $K\left(\frac{\mathbf{x}-\mathbf{x}_n}{h}\right) = (2\pi)^{-D/2} \exp\left(-\frac{1}{2} \|(\mathbf{x}-\mathbf{x}_n)/h\|^2\right)$. The uniform kernel gives a histogram without an origin x_0 .
- Only parameter: the bandwidth h > 0. The KDE is spiky if $h \downarrow$, smooth if $h \uparrow$. The KDE is not very sensitive to the choice of K.
- $-p(\mathbf{x})$ is continuous and differentiable if K is continuous and differentiable.
- In practice, can take $K((\mathbf{x} \mathbf{x}_n)/h) = 0$ if $||\mathbf{x} \mathbf{x}_n|| > 3h$ to simplify the calculation. We still need to find the samples \mathbf{x}_n that satisfy $||\mathbf{x} - \mathbf{x}_n|| \le 3h$ (neighbors at distance $\le 3h$).
- Also possible to define a different bandwidth h_n for each data point \mathbf{x}_n (adaptive KDE).
- The KDE quality degrades as the dimension D increases (no matter how h is chosen). Could be improved by using a full covariance Σ_n per point, but it is preferable to use a mixture with K < N components.
- k-nearest-neighbor density estimate: $p(\mathbf{x}) = \frac{k}{2N} \frac{1}{d_k(\mathbf{x})}$ for $\mathbf{x} \in \mathbb{R}^D$, where $d_k(\mathbf{x}) =$ (Euclidean) distance of \mathbf{x} to its kth nearest sample in \mathcal{X} .
 - Like using a KDE with an adaptive bandwidth $h = 2d_k(\mathbf{x})$.
 - Instead of fixing h and counting how many samples fall in the bin, we fix k and compute the bin size containing k samples.
 - Only parameter: the number of nearest neighbors $k \ge 1$.
 - $-p(\mathbf{x})$ has a discontinuous derivative. It does not integrate to 1 so it is not a pdf.

