
Dimensionality reduction and feature selection

• If we want to train a classifier (or regressor) on a sample {(xn, yn)}Nn=1 where the number of
features D in x (the dimension of x) is large:

– Training will be slow.

– Learning a good classifier will require a large sample.

• It is then convenient to transform each example xn ∈ RD into a new example zn = F(xn) ∈ RL

having lower dimension L < D (as long as we don’t lose much information). This would work
perfectly if the data points did lie on a manifold of dimension L contained in RD.

• Two basic ways to do this:

– Feature selection: F(x) = a subset of x1, . . . , xD.
It doesn’t modify the features, it simply selects L and discards the rest.

Ex: best-subset/forward/backward selection.

– Dimensionality reduction (DR): F(x) = a l.c. or
some other function of all the x1, . . . , xD.
It constructs L new features and discards the original D features.

Ex: PCA, LDA. . .

x = (x1, x2, x3, x4, x5)
T ⇒ for L = 2:

→ F(x) = (x2
x5).

→ F(x) =
(
1x1+3x2−5x3+5x4−4x5
2x1+3x2−1x3+0x4+2x5

)
.

• If reducing to L ≤ 3 dimensions, can visualize the dataset and look for patterns (clusters, etc.).

• DR algorithms learn one or more of the following:

– The dimensionality reduction or projection mapping F: x ∈ RD → z ∈ RL.

– The reconstruction mapping f : z ∈ RL → x ∈ RD.
The image of f defines a subspace or manifold of dimension L contained in RD.

– The latent projections z1 = F(x1), . . . , zN = F(xN) ⊂ RL of the training points.

Review of eigenvalues and eigenvectors

For a real symmetric matrix A of D ×D:

• Eigenvalues and eigenvectors of: Au = λu⇒
{

λ ∈ R: eigenvalue
u ∈ RD: eigenvector.

• A has D eigenvalues λ1 ≥ · · · ≥ λD and D corresponding eigenvectors u1, . . . ,uD.

• Eigenvectors of different eigenvalues are orthogonal: uT
i uj = 0 if i ̸= j.

• A is

nonsingular : all λ ̸= 0

positive definite: all λ > 0 (⇔ xTAx > 0 ∀x ̸= 0)

positive semidefinite: all λ ≥ 0 (⇔ xTAx ≥ 0 ∀x ̸= 0).

• Spectral theorem: A symmetric, real with normalized eigenvectors u1, . . . ,uD ∈ RD associated with eigen-
values λ1 ≥ · · · ≥ λD ∈ R ⇒ A = UΛUT =

∑D
i=1 λiuiu

T
i where U = (u1 . . .uD) is orthogonal and

Λ = diag (λ1, . . . , λD). In other words, a symmetric real matrix can be diagonalized in terms of its eigen-
values and eigenvectors.

• λ1 = maxx̸=0
xTAx
xTx

⇔ maxx x
TAx s.t. ∥x∥ = 1, achieved at x = u1.

λ2 = maxx̸=0
xTAx
xTx

s.t. xTu1 = 0 ⇔ maxx x
TAx s.t. ∥x∥ = 1, xTu1 = 0, achieved at x = u2.

etc.

• Covariance matrix Σ = 1
N

∑N
n=1 (xn − µ)(xn − µ)T positive definite (unless zero variance along some dim.).

Mahalanobis distance (x− µ)TΣ−1(x− µ) = 1⇒ ellipsoid with axes =
√
λ1, . . . ,

√
λD (stdev along PCs).

• w ∈ RD: var
{
wTx1, . . . ,w

TxN

}
= wTΣw. In general for WD×L: cov

{
WTx1, . . . ,W

TxN

}
= WTΣW.

1

Note from Miguel Carreira-Perpiñán

Feature selection: forward selection

• Problem: given a sample {(xn, yn)}Nn=1 with xn ∈ RD, determine the best subset of the D
features such that the number of selected features L is as small as possible and the classification
accuracy (using a given classifier, e.g. a linear SVM) is as high as possible.
Using all D features will always give the highest accuracy on the training set but not necessarily on the validation set.

• Useful when some features are unnecessary (e.g. irrelevant for classification or pure noise) or
redundant (so we don’t need them all).
Useful with e.g. microarray data. Not useful with e.g. image pixels.

• Best-subset selection: for each subset of features, train a classifier and evaluate it on a validation
set. Pick the subset having highest accuracy and up to L features.
Combinatorial optimization: 2D possible subsets ofD features?. Ex: D = 3: {∅, {x1}, {x2}, {x3}, {x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}}.
Brute-force search only possible for small D ⇒ approximate search.

• Forward selection: starting with an empty subset F , sequentially add one new feature at a
time. We add the feature d ∈ {1, . . . , D} such that the classifier trained on F ∪{d} has highest
classification accuracy in the validation set. Stop when the accuracy improves little, or when
we reach L features. Backward selection: same thing but start with F = {1, . . . , D} and remove one feature at a time.

It is a greedy algorithm that is not guaranteed to find an optimal subset, but gives good results.
It trains Θ(L2) classifiers if we try up to L features, so it is convenient when we expect the
optimal subset to contain few features.

• Lasso (for regression): minw

∑N
n=1 (yn −wTxn)

2 + λ∥w∥1 (where λ ≥ 0 is set by cross-validation).
The ℓ1 norm ∥w∥1 = |w1|+ · · ·+ |wD| makes many wd be exactly zero if λ is large enough.

• These feature selection algorithms are supervised : they use the labels yn when training the
classifier. The features selected depend on the classifier we use. There are also unsupervised algorithms.

Ex: forward selection on the Iris dataset (D = 4 features, K = 3 classes). Result: features {F4,F3}.

4 4.5 5 5.5 6 6.5 7 7.5 8
−1

0

1

F
1

2 2.5 3 3.5 4 4.5
−1

0

1

F
2

1 2 3 4 5 6 7
−1

0

1

F
3

0 0.5 1 1.5 2 2.5
−1

0

1

F
4

0
1

2
3

4 5 6 7 8

F
4

F1

0
1

2
3

2

2
.5 3

3
.5 4

4
.5

F
4

F2

0
1

2
3

0 2 4 6 8

F
4

F3

2

Dimensionality reduction: principal component analysis (PCA)

0

2

4

6

8

10

0 2 4 6 8 10

x
2

x1

PC1

PC2

0 10 20 30 40 50 60 70
0

100

200

Eigenvectors

E
ig

e
n

v
a

lu
e

s

(a) Scree graph for Optdigits

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Eigenvectors

P
ro

p
.

o
f

v
a

r.

(b) Proportion of variance explained

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

First eigenvector

S
e

c
o

n
d

 e
ig

e
n

v
e

c
to

r

Optdigits after PCA

0

0

7

4

6

2

5

5

0

8

7

1
9

5

3

0

4

7

8

4

7

8

5

9
1

2

0

6

1

8

7

0

7

6

9

1
9

3

9

4

9

2

1

9

9

6

4

3

2

8

2

7 1

4

6

2

0

4

6

3

7
1

0

2

2

5

2

4

8

1

7

3

0

3

3

7

7

9

1

3

3

4

3

4

2

8

8
9

8

4

7

1

6

9

4

0

1

3

6

2

• Aims at preserving most of the signal information.
Find a low-dimensional space such that when x is projected there, information loss is minimized.

• Which direction w ∈ RD shows most variation? maxw wTΣw s.t. ∥w∥ = 1⇒ w = u1
?. p. 120

• Unsupervised linear DR method: given {xn}Nn=1 ⊂ RD (with mean zero and covariance matrix
Σ of D ×D), when reducing dimension to L < D, PCA finds:

– a linear projection mapping F: x ∈ RD →WTx ∈ RL, and

– a linear reconstruction mapping f : z ∈ RL →Wz ∈ RD,

where WD×L has orthonormal columns (WTW = I), that are optimal in two equivalent senses:

– Maximum projected variance: maxW tr
(
cov

{
WTx1, . . . ,W

TxN

}) ?
= tr

(
WTΣW

)
.

– Minimum reconstruction error : minW
1
N

∑N
n=1

∥∥xn −WWTxn

∥∥2 ?
=− tr

(
WTΣW

)
+constant.

• The covariance in the latent space cov {Z} ?
= WTΣW is diagonal?: uncorrelated projections.

• If the mean of the sample is µ = 1
N

∑N
n=1 xn ⇒ F(x) = WT (x− µ) and f(z) = Wz+ µ.

• How to computeW, givenΣ? Eigenproblem maxW tr
(
WTΣW

)
s.t.WTW = I whose solution

is given by the spectral theorem. Decompose Σ = UΛUT with eigenvectors U = (u1 . . .uD)
and eigenvalues Λ = diag (λ1, . . . , λD), sorted decreasingly. Then W = U1:L = (u1, . . . ,uL),
i.e., the eigenvectors associated with the largest L eigenvalues of the covariance matrix Σ.

• Total variance of the data: λ1 + · · ·+ λD = tr (Σ) = σ2
1 + · · ·+ σ2

D.
Variance “explained” by the latent space: λ1 + · · ·+ λL = tr

(
WTΣW

)
.

We can use the proportion λ1+···+λL

λ1+···+λD
∈ [0, 1] of explained variance to determine a good value

for L (e.g. 90% of the variance, which usually will be achieved with L≪ D).

• In practice with high-dimensional data (e.g. images), a few principal components explain most
of the variance if there are correlations among the features.

• Useful as a preprocessing step for classification/regression:

{
reduce the number of features

partly remove noise.
• Basic disadvantage: it fails with nonlinear manifolds.

• Related linear DR methods:

– Factor analysis : essentially, a probabilistic version of PCA.

– Canonical correlation analysis (CCA): projects two sets of features x, y onto a common
latent space z.

• Related nonlinear DR methods: autoencoders (based on neural nets), etc.

3

Dimensionality reduction: linear discriminant analysis (LDA)

w

m
1

m
1

m
2

m
2

s
1

2

s
2

2

x
1

x
 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4
Optdigits after LDA

0

0

7

4

6

2

5
5

0

8

7

1

9

5

3

0

4

7

8

4

7

8

5

9

1

2

0

6

1

8

7

0

7

6

9
1

9

3

9

4

9

2

1

9
9

6

4

32

8

2

7

1
4

6

2

0

4

6

3

7

1

0

2

2

5
2

4

8

1

7

3

0

3

3

7
7

9

1

3

3

4

3

4

2

8
8

9

8

4

7

1

6

9

4

0

1

3 6

2

−2 0 2 4
−2

0

2

4

 pca

 lda

−4 −2 0 2
−1

−0.5

0

0.5

1

PCA projection
−4 −3 −2 −1

−1

−0.5

0

0.5

1

LDA projection

• Aims at preserving most of the signal information that is useful to discriminate among the classes.
Find a low-dimensional space such that when x is projected there, classes are well separated.

• Supervised linear DR method: given {(xn, yn)}Nn=1 where xn ∈ RD is a high-dimensional feature
vector and yn ∈ {1, . . . , K} a class label, when reducing dimension to L < D, LDA finds a
linear projection mapping F: x ∈ RD →WTx ∈ RL with WD×L that is optimal in maximally
separating the classes from each other while maximally compressing each class.
Unlike PCA, LDA does not find a reconstruction mapping f : z ∈ RL →Wz ∈ RD. It only finds the projection mapping F.

• Define:

– Number of points in class k: Nk. Mean of class k: µk =
1
Nk

∑
yn=k xn.

– Within-class scatter matrix for class k: Sk =
∑

yn=k (xn − µk)(xn − µk)
T .

– Total within-class scatter matrix SW =
∑K

k=1 Sk.

– Between-class scatter matrix SB =
∑K

k=1Nk(µk − µ)(µk − µ)T where µ = 1
K

∑K
k=1µk.

• In the latent space, the between-class and within-class scatter matrices are WTSBW and
WTSWW (of L× L).

• Fisher discriminant : max
W

J(W) =

∣∣WTSBW
∣∣

|WTSWW|
=

between-class scatter

within-class scatter
.

• This is an eigenproblem whose solution is W = (u1, . . . ,uL) = eigenvectors associated with the
largest L eigenvalues of S−1W SB.
rank (SB)

?
≤ K − 1⇒ rank (S−1

W SB) ≤ K − 1. So we can only use values of L that satisfy 1 ≤ L ≤ K − 1.
SW must be invertible (if it is not, apply PCA to the data and eliminate directions with zero variance).

4

Dimensionality reduction: multidimensional scaling (MDS)

True distances along earth surface Estimated positions on a 2D map

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000
−2000

−1500

−1000

−500

0

500

1000

1500

2000

 Athens

 Berlin

 Dublin

 Helsinki

 Istanbul

 Lisbon

 London

 Madrid

 Moscow

 Paris

 Rome

 Zurich

• Aims at preserving distances or similarities.
Place N points in a low-dimensional map (of dimension L) such that their distances are well preserved.

• Unsupervised DR method: given the matrix of squared Euclidean distances d2nm = ∥xn − xm∥2
between N data points, MDS finds points z1, . . . , zN ∈ RL that approximate those distances:

min
Z

N∑
n,m=1

(
d2nm − ∥zn − zm∥2

)2
.

• MDS does not use as training data the actual feature vectors xn ∈ RD, only the pairwise
distances dnm. Hence, it is applicable even when the “distances” are computed between objects
that are not represented by features. Ex: perceptual distance between two different colors according to a subject.

• If d2nm = ∥xn − xm∥2 where xn ∈ RD and D ≥ L, then MDS is equivalent to PCA on {xn}Nn=1. p. 137

• MDS does not produce a projection or reconstruction mapping, only the actual L-dimensional
projections z1, . . . , zN ∈ RL for the N training points x1, . . . ,xN ∈ RD.

• How to learn a projection mapping F: x ∈ RD → z ∈ RL with parameters Θ?

Direct fit : find the projections z1, . . . , zN by
MDS and then solve a nonlinear regression

Parametric embedding : requires nonlinear
optimization

min
Θ

N∑
n=1

(zn − F(xn;Θ))2 min
Θ

N∑
n,m=1

(
d2nm − ∥F(xn;Θ)− F(xm;Θ)∥2

)2
.

• Generalizations of MDS:

– Spectral methods : Isomap, Locally Linear Embedding, Laplacian eigenmaps. . .
Require solving an eigenproblem.
Isomap: define dnm = geodesic distances (approximated by shortest paths in a nearest-neighbor graph of the sample).

– Nonlinear embeddings : elastic embedding, t-SNE. . .
Require solving a nonlinear optimization.

5

