
CSE 176 Introduction to Machine Learning

Final Exam Review



Neural Network (Topic 9, 10, 11,12)
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Linear Classification (perceptron)

❑For two class problem and 2-dimensional data (feature vectors)
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Depicting shallow neural networks

Each parameter multiplies its source and adds to its target



With enough hidden units

❑… we can describe any 1D function to arbitrary accuracy



Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow 
neural network can describe any continuous function on a 

compact subset of        to arbitrary precision”



Example of Multi Layer Perceptron (MLP)
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Linear Classification (perceptron)

❑For two class problem and 2-dimensional data (feature vectors)
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1

0
t

u(t) - unit step function 
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

Relaxed predictions are often interpreted as prediction “probabilities”

1-Ϭ(t) 

Perceptron:

approximate decision function u using its softer version (relaxation) 

Ϭ(t) ≈ u(t)



Perceptron approximation:

Consider two probability distributions  

over two classes (e.g. bass or salmon) :                      and

(binary) 

Cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Distance between two distributions can be evaluated via cross-entropy 
(equivalent to KL divergence for fixed target)



Consider two probability distributions  

over K classes (e.g. bass, salmon, sturgeon) :            and

K-label perceptron’s output:                       for example

sum of Negative Log-Likelihoods  (NLL)

salmonbass sturgeon

Multi-valued label              gives one-hot distribution   

k-th 

index

Total loss:

cross entropy

(general multi-class case)

Cross-Entropy Loss



5-13

- direction of (negative) gradient at point x=(x1,x2)  is direction 
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 



5-14

Example: for a function of two variables

update equation for a point x=(x1,x2) 

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 

Stop at a local minima where 



x

How to Set Learning Rate ?

• If   too large, may 
overshoot the local 
minimum and possibly 
never even converge

L(x)

x

• If   too small, too many 
iterations to converge

x(2) x(1)x(4) x(3)

L(x)



Learning Rate

• Monitor learning rate by looking at how fast the 
objective function decreases

L(x)

number of iterations

          or time

very high learning rate

high learning rate

low learning rate

good learning rate



Variable Learning Rate

k = 1  

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1 

If desired, can change learning rate  at each iteration

k = 1  

x(1) = any initial guess

choose  

while ||L(x(k))|| > 

 choose (k) 

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1 

fixed α 

gradient descent
variable α 

gradient descent



Computing Derivatives: Chainof ChainRule
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Computing Derivatives: Look at OneNode
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Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Lecture 7 -



Activation Functions

Leaky ReLU

[Mass et al., 2013] 

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha 

(parameter)

Lecture 7 -



(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

Data Preprocessing



Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x, 

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

Lecture 7 -



Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x, 

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 

shift parameters:

Output,

Shape is N x D

Learning = ,

= will recover the 

identity function!

Lecture 7 -



Transfer Learning with CNNs
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1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014



Batch Gradient Methods

• Batch or deterministic gradient methods:

– Optimization methods that use all training samples  
are batch or deterministic methods

• Somewhat confusing terminology

– Batch also used to describe minibatch used by  
minibatch stochastic gradient descent

– Batch gradient descent implies use of full training  set

– Batch size refers the size of a minibatch



Stochastic or Online Methods

• Those using a single sample are called

Stochastic or on-line

– On-line typically means continually created  
samples drawn from a stream rather than 

multiple passes over a fixed  size training set

• Deep learning algorithms usually use more 
than one but fewer than all samples

• Methods traditionally called minibatch or 

minibatch  stochastic now simply called

stochastic

Ex: (stochastic gradient descent - SGD)



SGD Follows Gradient Estimate Downhill

Algorithm: SGD update at training iteration k

A crucial parameter is the learning rate ε

At iteration k it is εk



Need for Decreasing Learning Rate

• True gradient of total cost function

– Becomes small and then 0

• One can use a fixed learning rate

• But SGD has a source of noise

– Random sampling of m training samples

• Gradient does not vanish even when arriving at a minimum

– Common to decay learning rate linearly 
until  iteration τ: εk=(1-α)ε0+αετ with α=k/τ

– After iteration τ, it is common to leave ε constant

• Often a small positive value in the range 0.0 to 1.0



Learning Rate Decay

• Decay learning rate

τ: εk=(1-α)ε0+αετ with α=k/τ

• Learning rate is calculated at each update

– (e.g. end of each mini-batch) as follows:

• Where lrate is learning rate for current epoch

• initial_lrate is specified as an argument to SGD

• decay is the decay rate which is greater than zero and

• iteration is the current update number



Momentum

Gradient Step

Momentum Step

Actual Step



SGD Algorithm with Momentum

Algorithm: SGD with momentum

Keras: The learning rate can be specified via the lr argument and  

the momentum can be specified via the momentum argument.



Momentum
• SGD with momentum

Contour lines depict a quadratic loss function  

with a poorly conditioned Hessian matrix.
Red path cutting across the contours depicts  
path followed by momentum learning rule as  
it minimizes this function

• Comparison to SGD without momentum
At each step we show path that would  

be taken by SGD at that step

Poorly conditioned quadratic objective  
Looks like a long narrow valley
with steep sides

Wastes time



Motivation

Harder



AdaGrad
• Individually adapts learning rates of all parameters

– Scale them inversely proportional to the sum of the 
historical squared values of the gradient

• The AdaGrad Algorithm:

Performs well for some but not all deep learning



A 2D image  f[i,j]  can be filtered by a 2D kernel  h[u,v]  to produce 
an output image g[i,j]:

This is called a convolution operation and written:

h is called “kernel” or “mask” or “filter” which 
representing a given “window function”

2D Convolution
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convolution kernel

size

input output



Convolutional Layer

Convolve 3D image with 3D filter

• result is a 28x28x1 activation map, no zero padding used

input output
our notation for

such conv. layer

/ kernel



Convolutional Layer

1x1 convolutions make perfect sense

Example

• Input image of size 56x56x64

• Convolve with 32 filters, each of size 1x1x64

shape of each 

1x1x64 kernel

64

applying

a bank of 32 

1x1x64 filters/kernels



Basic CNN example      (à la LeNet -1998)
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Common Structure: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla –  TPAMI 2017

decoder 

(upsampling part)
encoder

decoder upsamples encoder-generated features 
important:

encoder convolutional layers are

typically pre-trained on image net



Note: this result is equivalent to Bilinear Interpolation
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Bilinear Interpolation is a special case of deconvolution.
The corresponding transpose convolution kernels exists for any stride (code https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183)

V. Dumoulin, and F. Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Deconvolution: Example

https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183


Skip connections: concatenation

M

H
 x
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N M+N

feature map

“skipped”

from encoder

feature map

“upsampled”

insider decoder

H
 x

 H

feature vector dimensions
feature maps 

concatenation



U-net: expanding decoder with symmetry

and many skip connections



RNN and Transformer (Topic 13)



N-gram models

N-gram models assume each word (event) 

depends only on the previous n−1 words (events):
N

Unigram model: P(w(1) . . .w(N)) = ∏ P(w(i))
i=1 

N

Bigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1))
i=1 

N

Trigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1),w(i−2))
i=1

Independence assumptions where the n-th event in a sequence depends 

only on the last n-1 events are called Markov assumptions (of order n−1).



How many parameters do n-gram models have?

Given a vocabulary V of |V| word types:

Unigram model:

Bigram model:

Trigram model:

so, for |V| = 104:

104 parameters

1012 parameters

108 parameters

|V| parameters 

|V|2 parameters

|V|3 parameters

(one distribution P( w(i) ) with |V| outcomes 

[each w   V is one outcome])



• Alice was beginning to get very

tired of sitting by her sister on the

bank, and of having nothing to do:

once or twice she had peeped into the

book her sister was reading, but it

had no pictures or conversations in

it, 'and what is the use of a book,'

thought Alice 'without pictures or

conversation?'

P(w(i) = of | w(i–1) = tired) = 1

P(w(i) = of | w(i–1) = use) = 1

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2 

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3

P(w(i) = book | w(i–1) = the) = 1/3

P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice



An n-gram model P(w | w1…wk)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS) 

We want to condition each word on k preceding words

Our (naive) model:

— [Naive]

Each input word wi  V is a V-dimensional one-hot vector v(w)

→ The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h

— The output layer is a softmax over V elements

P(w | w1…wk) = softmax(hW2 + b2)



1D CNNs for text

Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

— Filter size n = 2, stride = 2, no padding:

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog



Recurrent Neural Network

❑Temporal nature in language processing

❑RNN deals with sequential input data stream like language.

A simple RNN



A Simple Recurrent Neural Network

❑RNN illustrated as a feed-forward network

ht = g(Uht−1 +Wxt ) 
yt = f (Vht )



A Simple Recurrent Neural Network

❑RNN unrolled in time

ht = g(Uht−1 +Wxt ) 
yt = f (Vht )



How to optimize Recurrent Neural Network?

❑Backpropagation through time

ht = g(Uht−1 +Wxt ) 
yt = f (Vht )



Training an RNN Language Model

❑Maximum likelihood estimation



Generation with RNN Language Model

❑Autoregressive (casual) generation



Vanishing/exploding gradients

❑Consider the gradient of Lt at step t, with respect to the 
hidden state hk at some previous step k (k<t ):

❑Recurrent multiplication

❑Gradients too small (vanishing gradient) or too large 
(exploding gradient)



Exploding gradients

❑What is the problem?

❑We take a very large step in SGD

❑Solution: Gradient clipping



Vanishing gradients

❑What is the problem?

❑Parameters barely get updated (no learning)

❑Solution:
❑LSTMs: Long short-term memory networks



Problem of Encoder-decoder architecture

❑Context vector encodes EVERYTHING about input sequence

❑Context vector acts as a bottleneck



Attention weights between words

❑Example: English to French translation

❑Input: “The agreement on the 

European Economic Area was

signed in August 1992.”

❑Output: “L’accord sur la zone

 économique européenne 

a été signé en août 1992.”



Casual or backward-looking self-attention

❑Attends to all the inputs up to, and including, the current 
one



Self-attention

❑Final Version





Decision Tree (Topic 14)



An example of Decision Tree



Which feature/attribute to split first?

❑Probably Patron and Type



Which feature/attribute to split first?

❑Idea: good attribute splits examples into subsets that are 
(ideally) all positive or all negative



Information Gain stay 

leave

I = -.5*log2(.5) - .5*log2(.5) = 0.5+0.5 = 1

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)-2/3*log2(2/3); P=1/2
I*P=0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 = 0

• Information gain for asking Patrons is 0.54, for asking Type is 0

Information gain = 1 - 0.46 = 0.54

I = 6/6*1 = 1



Overfitting, Early Stopping, and Pruning

❑Growing the tree until each leaf is pure will produce a large 
tree that overfits.

❑Early stopping: we stop splitting if the impurity is below a 
user threshold θ > 0.

❑Pruning: we grow the tree in full until all leaves are pure 
and the training error is zero. Then, we find subtrees that 
cause overfitting and prune them



Ensemble Model (Topic 15)



Example: Random forest

❑Train an ensemble of L decision trees on L different subsets 
of the training set 

❑Define the ensemble output for a test instance as the 
majority vote (for classification) or the average (for 
regression) of the L trees



Bagging

❑We generate L (partly different) subsets of the training set

❑We train L learners, each on a different subset

❑The ensemble output is defined as the vote or average

❑Random forest: a variation of bagging



Boosting

❑Weak learner: a learner that has probability of error < 1/2 
(i.e., better than random guessing on binary classification).
❑Ex: decision trees with only 1 or 2 levels.

❑Strong learner: a learner that can have arbitrarily small 
probability of error. 
❑Ex: neural net

❑Boosting combines many weak learners to a strong learner



Ada Boost for 2 Classes

1. Find best weak classifier ht(x) using weights D(x)

2. Computethe error rate εt as
N

i [ h (xi)] t

i ≠D(x )⋅I y
t ∑

i=1

ε =

3. compute weight αt of classifier ht

αt = log((1- εt)/ εt )

4. Foreach xi , D(xi) =D(xi)⋅exp(αt⋅I[yi ≠ht(xi ) ])

Initialization step: for each example x, set
D(x)=

1 , where N is the number of examples
N

Iteration step (for t =1…T):

5. Normalize D(xi) so that
N

∑
i=1

D(xi)=1

ffinal(x) =sign [ ∑α t ht (x) ]



AdaBoost Example

ffinal (x)=

final
f (x)= sign(0.42sign(3-x )+0.65sign(7-x )+0.92sign(x-4))

1 1 2

• Decision boundary non-linear



Support Vector Machine (Topic 16)



SVM: Linearly Separable Case

• SVM: maximize the margin

• margin is twice the absolute value of distance b of the closest 

example to the separating hyperplane



SVM: Linearly Separable Case

• Supportvectors are samples closest to separating hyperplane
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