N,

UCMERCED

CSE 176 Introduction to Machine Learning
Final Exam Review

N,

JCMERCEL

Neural Network (Topic 9, 10, 11,12)

Neural Unit

Output value }’

Non-linear activation function

Weighted sum

Weights w,
Input layer x;

Linear Classification (perceptron)

dFor two class problem and 2-dimensional data (feature vectors)

5 _
A “gOOd’,
X2 linear transformation >@ label
o from 2D space to 1D
o good
o WoHWiX;HW5X, = (0 separation
° ° K by simple
° threshold
e o o o
e W0 T~ WiXy —l;W2X2.< 0 @ Iabel
] ® o
Vv -
thresholding f _
W,X) = U (Wy+W,X,+W,X f(w,Xx) € {0
can be formally () (0T V1AL TVV? 2) () {
represented by this 1 u(t) _ _
prediction function 0 unit step function u(t) ;

t (ak.a. Heaviside function)

Depicting shallow neural networks

h1=a
hgza

hgza

:(910 -+ (911513:
020 + 021

:(93() + (931 LC

Y = ¢o + ¢1h1 + @2ho + P3h3

With enough hidden units

... we can describe any 1D function to arbitrary accuracy

a) b) c)
1.0 - - . . - .
5 linear regions =] |10 linear regions |20 linear regions
N 4 .
” \\\ l/
N \ ’l’
) \\\ ,I’
a.0.0 \ L
+ N Vid
) \\ '/
O \\ Il
N
] __/’
'I.O T T T T T T T T T T T T T T ' ' ' ' T T T T T T T
0.0 1.0 2.00.0 1.0 2.00.0 1.0 2.0
Input, x Input, x Input, x

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function on a
compact subset of R to arbitrary precision”

Example of Multi Layer Perceptron (MLP)

Bias
vector

\

B, € R* G 3, € R? B, € R3 B, € R?

(2) ()
(=)

s S

(XX 3T<

S

WEIght > QO c R4X3 ’ Ql c R2X4

mat”XI o Hidden Hidden
Pt layer, h layer, ho

Linear Classification (perceptron)

dFor two class problem and 2-dimensional data (feature vectors)

5 _
A “gOOd’,
X2 linear transformation >@ label
o from 2D space to 1D
o good
o WoHWiX;HW5X, = (0 separation
° ° K by simple
° threshold
e o o o
e W0 T~ WiXy —l;W2X2.< 0 @ Iabel
] ® o
Vv -
thresholding f _
W,X) = U (Wy+W,X,+W,X f(w,Xx) € {0
can be formally () (0T V1AL TVV? 2) () {
represented by this 1 u(t) _ _
prediction function 0 unit step function u(t) ;

t (ak.a. Heaviside function)

Perceptron: f(w,x') = w(WTX") ~ o(WTX?
approximate decision function u using its softer version (relaxation)

R u(t) - unit step function

1 (a.k.a. Heaviside function)
1-6(1) 6() = u® 6(t) - sigmoid function
1
t o(t) :=
: g (t) 1 + exp(—t)

Relaxed predictions are often interpreted as prediction “probabilities”
Pr(x’ € Classl | W) = o(W'X")
Pr(x' € ClassO | W) = 1—o(WTX?) = o(-WTX?)

(binary case)

CI’OSS- E ﬂtrO py LOSS (related to logistic regression loss)

Perceptron approximation: f(w,x') = u(W'X") ~ o(W'X")

Consider two probability distributions
over two classes (e.g. bassorsalmon) : (y,1—y) and (o,1—0)

bass salmon

(binary)
Cross-entropy loss: | L(y,o0) = —-ylne — (1—y)In(l— o)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)
H(p,q):==— Y pi Ingy
k

(general multi-class case)

Cross-Entropy Loss

Multi-valued label y* = k gives one-hot distribution ¥ = (0,0,1)0,....0)

Consider two probability distributions
over K classes (e.g. bass, salmon, sturgeon): §° and (01,02,03,...,0k)

e

basssalmon sturgeon PI‘(Xi < Class k ’ W) — 6-/€(WX%)

cross entropy
Total loss: L(W) = » Y —yilnap(WX?)

i€train k

—) Ingu(WX?)

1€train

= L(W)

sum of Negative Log-Likelihoods (NLL)

Multi-variate functions

Gradient Descent

Example: for a function of two variables
- L(Xq,%;)

»

AL
85[32

i L

- direction of (negative) gradient at point x=(x,,x,) is directiog
of the steepest descent towards lower values of function

- magnitude of gradient at x=(x;,x,) gives the value of

Multi-variate functions

Gradient Descent

Example: for a function of two variables
- L(Xq,%;)

»

...

"aay
ey,
"y
"~
0
.
‘e

. Xy

update equation for a point X=(x;,X,)

x' =x—aVL

OF
— 8171
OF

ds

N,

0

Stop at a local minima where VL

How to Set Learning Rate o.?

x' =x—aVL
If o too small, too many L(x) 1
iterations to converge
AN
X
If o too large, may L(X) 1

overshoot the local
minimum and possibly
never even converge

Learning Rate
e Monitor learning rate by looking at how fast the

objective function decreases

L(x) very high learning rate

low learning rate

high learning rate

wning rate

Variable Learning Rate

If desired, can change learning rate a at each iteration

k=1 k=1
x1) = any initial guess x) = any initial guess
choose 0, € choose g
while a||VL(xV)|| > & 7 | while of|VLxW¥)|| > £

x(+1) = x (K - o VL(x®)) choose al¥

K=k+ 1 x(+1) = x (K - oK) VL(x*)

k=k+1
fixed o variable a

gradient descent gradient descent M

Computing Derivatives: Chain of Chain Rule

Compute 9 from the end backwards irection of computatior

 for each edge, with respect to the main variable at edge origin
using chain rule with respect to the variable at edge end, if needed

)) 616

od_oddb ad_@adgc
cda oboa ob ocob @C

prev local prev local local
y

example: if h(c)=c?, then

ad _ gh
oef ocC

=2C

Computing Derivatives: Look at One Node

a _oLoa_d,
OW daow oOa @ection of computatior

A _dLoh _oL
0

a=\a ohoa oh

aL_ao already
@aL _dLda_da _Vy = = computed
= W 7 6h oC 8h 80
ox 0adxX éa ‘\ a
Gmad)—(c=ub) ¢
oL_odob_d

V m‘abm‘at@w
JL oL oh _ oL

@ ob ohob oh

d_adb_a,
&y obody ab

« Some of these partial derivatives are intermediate
 their values will not be used for gradient descent

Activation Functions

Sigmoid

o(z) =

1+e—=

tanh
tanh(x)

ReLU
max (0, x)

| |
| = =
= o 5]
o
5 = = [+ -
H\ Hj |
© o o

Leaky ReLU
max(0.1z, x)

Maxout

max(wi x + by, ws T + by)

ELU

{oz(eﬂIc —1)

x>0
x <0

) 10

. 3

Activation Functions Hootol 2018]

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10,

=], 10

Parametric Rectifier (PReLU)

Leaky RelLU —
f(z) = max(0.01z, x) f@) maxﬁaw, .

backprop into \alpha
(parameter)

Data Preprocessing

original data zero-centered data normalized data
10 - 10 - 10 -
. 4
S S 5
o . . ,I
-5 -5} -5
\j
-10 -10

1g -10 5 0 S 1g -10 -5 0 5 10

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)

Batch Normalization [loffe and Szegedy, 2015]

N

Input: . - i .. Per-channel mean,

P TN XD 'LLJ_N;x’j shape is D
7=
AAA | N
2 . __,.\2 Per-channel var,

95 = N Z(xm Hj) shape is D

N X =1

Tij = Normalized x,

YVY ,/(;32,4_5 Shape is N x D

Batch Normalization [loffe and Szegedy, 2015]

N
Input: : N x D _ 1 Per-channel mean
; = X j !
Hi =N Zl "} shapeis D
g =
Learnable scale and , 1 5 Der-channel
_ . er-channel var,
shift parameters: 9G TN Z(xm = 1) shape is D
) 1=1
VB D i —
By = —2 J Normalized x,
Learning y=o, 0? 1e Shapeis N x D
B= k will recover the ’ Output

identity function! Shape is N x D

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

. - Razavian et al, “CNN Features Off-the-Shelf: An
ra n S e r e a r n I n g WI S Astounding Baseline for Recognition”, CVPR Workshops

2014
1. Train on Imagenet 2. Small Dataset (C classes)
FC-1000 FC-C
FC-4096 FC-4096 e e e
\ Reinitialize
FC-4096 FC-4096 . .
this and train
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool
Conv-512 Conv-512
Conv-512 Conv-512
MaxPool MaxPool Freeze these
Conv-256 Conv-256
Conv-256 Conv-256
MaxPool MaxPool
Conv-128 Conv-128
Conv-128 Conv-128
MaxPool MaxPool
Conv-64 Conv-64
Conv-64 Conv-64 j

Image Image

Batch Gradient Methods

« Batch or deterministic gradient methods:

— Optimization methods that use all training samples
are batch or deterministic methods

« Somewhat confusing terminology

— Batch also used to describe minibatch used by
minibatch stochastic gradient descent

— Batch gradient descent implies use of full training set
— Batch size refers the size of a minibatch

N,

UCMERCED

Stochastic or Online Methods

* Those using a single sample are called
Stochastic or on-line
— On-line typically means continually created

samples drawn from a stream rather than
multiple passes over a fixed size training set

* Deep learning algorithms usually use more
than one but fewer than all samples

« Methods traditionally called minibatch or
minibatch stochastic now simply called
stochastic

Ex: (stochastic gradient descent - SGD)

SGD Follows Gradient Estimate Downhill

Algorithm: SGD update at training iteration k

Require: Learning rate eg.
Require: Initial parameter 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set { D .. m(m)} with
corresponding targets y(i).
Compute gradient estimate: g + —I—% Vo) ; L(f () 9), y®)
Apply update: @ <+ 60 — ¢g
end while ~

A crucial parameter is the learning rate €
At iteration k 1t IS g,

Need for Decreasing Learning Rate

* True gradient of total cost function

— Becomes small and then O
* One can use a fixed learning rate

e But SGD has a source of noise

— Random sampling of m training samples
» Gradient does not vanish even when arriving at a minimum
— Common to decay learning rate linearly
until iteration t: g=(1-a)egtae, with a=k/t
— After iteration t, it is common to leave & constant
« Often a small positive value in the range 0.0 to 1.0

Learning Rate Decay

* Decay learning rate
T: §=(1-a)ggtoe, With a=k/t
« Learning rate Is calculated at each update
— (e.g. end of each mini-batch) as follows:

|1 lrate = initial_lrate * (1 / (1 + decay * iteration))

* Where lrate is learning rate for current epoch
* Initial_Irate is specified as an argument to SGD

* decay is the decay rate which is greater than zero and
« iteration is the current update number

1 from keras.optimizers import SGD

. ...
3 opt = SGD(1r=0.01, momentum=0.9, decay=0.01)

4 model.compile(..., optimizer=opt)

Momentum

Momentum Step

Actual Step

Gradient Step

SGD Algorithm with Momentum

‘Algorithm: SGD with momentum

Require: Learning rate ¢, momentum parameter .
Require: Initial parameter 6, initial velocity wv.
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z(1),... (™)} with
corresponding targets y(i).
Compute gradient estimate: g «— 2Vg Y. L(f(x®);8),y®)
Compute velocity update: v <+ av — eg
Apply update: 8 < 0 + v
end while

Keras: The learning rate can be specified via the Ir argument and
the momentum can be specified via the momentum argument.

1 from keras.optimizers import SGD
. ...

3 opt = SGD(1r=0.01, momentum=0.9)
4 model.compile(..., optimizer=opt)

Momentum

SGD with momentum
N

20

Contour lines depict a quadratic loss function
with a poorly conditioned Hessian matrix.
Red path cutting across the contours depicts
path followed by momentum learning rule as
it minimizes this function

10
ok
—10}

—20

-30 \

L 1 1 L
-30 =20 =10 O 10 20

Comparison to SGD without momentum

N At each step we show path that would
be taken by SGD at that step
Poorly conditioned quadratic objective

Looks like a long narrow valley
with steep sides

Wastes time

AN

L 1
-30 —20 -10 0 10 20
1

Motivation

=

AdaGrad

* Individually adapts learning rates of all parameters

— Scale them inversely proportional to the sum of the
historical squared values of the gradient

e The AdaGrad Algorithm:

Require: Global learning rate ¢
Require: Initial parameter 6
Require: Small constant §, perhaps 10~7, for numerical stability

Initialize gradient accumulation variable » = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {a:(l), — m(m)} with
corresponding targets y(i).
Compute gradient: g < T—Ian > L(f (®:0),y®)
Accumulate squared gradient: r < r+g® g
Compute update: AQ «+ —ﬁ; ® g. (Division and square root applied

element-wise)
Apply update: @ < 6 + A@
end while

Performs well for some but not all deep learning

2D Convolution \

A 2D image f[ij] can be filtered by a 2D kernel h[u,v] to produce
an output image g/ij]:

k k
gli,j1= > > h[u,v]- fli+u, j+v]
u=-k v=—k
This is called a operation and written:
g — h O f

h is called “kernel” or “mask” or “filter” which
representing a given “window function”

Convolutional Layer

Convolve 3D image with 3D filter
« resultis a 28x28x1 activation map, no zero padding used

activation map

- 32x32x3 image

V 5x5x3 filter / kernel /
@>O N

convolve (slide) over all

spatial locations /
32 h3 —1 28

3 HDXD 1

] our notation for
Input such conv. layer output

Convolutional Layer

1x1 convolutions make perfect sense

Example

* Input image of size 56x56x64
 Convolve with 32 filters, each of size 1x1x64

56
shape of dach >
1x1x64 kgrnel Vi
| 7 applying
64 a bank of 32
1x1x64 filters/kernels
56
64 32

04— 32
his{7"* X

56

56

Basic CNN example (21a LeNet -1998)
NOTE: transformation of multi-dimensional arrays (tensors)

| o
i —i
] X
) (@)

—i

greyscale
image

84 10-class
probabilities

Common Structure: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla— TPAMI 2017

| Convolutional Encoder-Decoder

Output

Segmentation

RGB Image I conv + Batch [Ndrmalisation + RelLU
I Pooling I Upsampling Softmax
encoder / \ decoder /
important: (upsampling part) ’\

encoder convolutional layers are decoder upsamples encoder-generated features

typically pre-trained on image net

Deconvolution: Example

Note: this result is equivalent to Bilinear Interpolation
Output Image

Input Image

Kernel

025 | 05 | 025

0.5 1 0.5

kernel=3x3
stride=2
padding=1 8

025 | 05 | 0.25

Bilinear Interpolation is a special case of deconvolution.

The corresponding transpose convolution kernels exists for any stride (code https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183)

V. Dumoulin, and F. Visin. "A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv:1603.07285 (2016).

https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183

Skip connections: concatenation

feature map feature map
“skipped” “upsampled”
from encoder insider decoder

HxH

-+

HxH

M N M+N

/

feature vector dimensions

concatenation

U-net: expanding decoder with symmetry

and many skip connections

input

: output
image .
tgiile "™ *1* * segmentation
il = map

fl - -
|

= l.'.I..'.l I""I"‘I = conv 3x3, RelLU
o * 512 512 - t - copy and crop
5 l"'-". |- - § max pool 2x2
| - ¥ | B # up-conv 2x2
mp cONY 1x1

N,

JCMERCEL

RNN and Transformer (Topic 13)

N-gram models

N-gram models assume each word (event)

depends only on the previous n§1 words (events):

Unigram model: P(w() ., wiN)) = M P(w)
i=1
N - -
Bigram model: P(w(1) ... w(N)) = M P(w] wli—1))
i=1
N - - -
Trigram model: P(w(1) .. .w(N)) = M P(wh]w(i=1) wli=2))
i=1
Independence assumptions where the n-th event in a sequence depends
only on the last n-1 events are called Markov assumptions (of order n—1).

How many parameters do n-gram models have?

Given a vocabulary V of |V| word types: so, for [V| = 104:

Unigram model: |V| parameters 104 parameters

(one distribution P(w®) with |V| outcomes
[each w € V is one outcome))

Bigram model: |V|2 parameters 108 parameters

Trigram model: |V|3 parameters 1012 parameters

N,

A bigram model for Alice

* Alice was beginning to get very
tired of sitting by her sister on the
bank, of having nothing to do:
once or twice she had peeped into the
book her sister was reading, but it
had no pictures or conversations in

it, ! what is the use of a book,'
thought Alice 'without pictures or
conversation?'
PWM)=of |wWi1=tired)=1 P(w() = bank | w(-1) = the) = 1/3
Pwih=of |wil)=use) =1 P(w@® = book | wi-1) = the) = 1/3
Pwi=sister|wi)=her)= 1 P(w(@)=use | w(i-1) = the) = 1/3

P(w() = beginning | wi-l) = was) = 1/2
P(w() = reading | wi-1) = was) = 1/2

N,

An n-gram model P(W | w1...wk)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (naive) model:

— [Naive]
Each input word wi € Vis a V-dimensional one-hot vector v(w)
— Theinput layer x = [v(wi),...,v(wk)] has Vxk elements

— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wk) = softmax(hW?2 + b2?)

1D CNNs for text

Textis a (variable-length) sequence of words (word vectors)
[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:
— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

Recurrent Neural Network

dTemporal nature in language processing

(RNN deals with sequential input data stream like language.

o YN
—/ /

A simple RNN

A Simple Recurrent Neural Network

(JRNN illustrated as a feed-forward network

h, = g(Uh,_; +Wx,) ()
y: =f(Vh,) \ v /
C)

A Simple Recurrent Neural Network

(JRNN unrolled in time

h, = g(Uh,_; +Wx,) w
y: =f(Vh,)

How to optimize Recurrent Neural Network?

C Y3)

C ¥) (h)
h, = g(Uh_, +Wx,) %
Ch) C X4)

(dBackpropagation through time

0Ly _ OL; ohy 0L ohy ohy OLs oh; ohy oh,
OW 0h; OW oh; oh, OW oh; oh, oh, oW

1 & oL oh; | oh,
___Zzzah,[nah 1]aw

=1 k=1

Training an RNN Language Model

dMaximum likelihood estimation

Next word long and thanks for all

A Y
Loss |—].Og1 ylongl l— .I.Og yand| |— log Ythanks | |— I.Og Yfor | — lo all .u — Z Lck
A A
y

ommeoer (1) () () G Cl))

Vocabulary vh

RNN > > > >
\ \ ~ J

g © [%] @ @ [% @

So long and thanks for

Generation with RNN Language Model

JAutoregressive (casual) generation

—_ —_— —_
~

long

-~

Sampled Word So

Softmax

Embedding

Input Word <S>

Vanishing/exploding gradients

(dConsider the gradient of L, at step t, with respect to the
hidden state h, at some previous step k (k<t):

(
oL 40T o
o~ on, | 11 on,

(JRecurrent multiplication

dGradients too small (vanishing gradient) or too large
(exploding gradient)

Exploding gradients

dWhat is the problem?
JWe take a very large step in SGD
dSolution: Gradient clipping

Algorithm 1 Pseudo-code for norm clipping
& < 55
if ||g|| > threshold then

~ , threshold »
& "el 8

end if

Vanishing gradients

dWhat is the problem?

(JParameters barely get updated (no learning)

dSolution:
LSTMs: Long short-term memory networks

Problem of Encoder-decoder architecture

(dContext vector encodes EVERYTHING about input sequence

(JContext vector acts as a bottleneck

bottleneck D

Lk

Encoder

ecoder

Lk

-

Attention weights between words

JExample: English to French translation

dinput: “The agreement on th

. A
European Economic Area was @9 L258wc B =
_ . . FERS6EDb0<czmn eSS .V
signed in August 1992. LB

accord

dOutput: “l’'accord sur la zone sur

, . , la
économique européenne one
a été signé en ao(it 1992 e
europeenne
a

été

signé

en

ao(t

1992

<end>

Casual or backward-looking self-attention

JAttends to all the inputs up to, and including, the current
one

L

Self-Attention [|:

Layer

Self-attention

Final Version

q = xWk, = x;W v, =xwWY
qi - k;

Jdr

o7¥ softmax(score(x;,x;)) Vj<i

a;, = E Q;jV;

j<i

score(X;,X;) =

Vision Transformer (ViT) Transformer Encoder

|
| \
I P R
MLP I @
E’jﬂd | MLP
| 4
| Norm
Transformer Encoder] :)
! @
.. | (.
P i - (@12 l @5 “@ﬁ | | Mt Head
Extra learnable - ~
class - L P f FI d Patch '
[class] embedding Inear I‘OJCCUOH 0 attene atches | r u_4 i
a . . | | | LA '_U!] | I Norm
"* @W |
|
1

WWE

Patches

[Embedded]

N,

JCMERCED

Decision Tree (Topic 14)

An example of Decision Tree

<A
O I O c @
O [] D Yes No
O
[]
o \ (o) L©
O O O Yes No “
c, O N ® [] O
G,

Which feature/attribute to split first?

dProbably Patron and Type

Example
Alt| Bar | Fri| Hun| Pat ||Price | Rain | Res| Type | Est
X; T | F F T F T | French] 0-10 T
Xo T | F F T F F | Thai §30-60 F
X3 F| T F F F F § Burger) 0-10 T
X4 T | F T T F F | Thai §J10-30 T
X5 T | F T F F T | French| >60 F
Xg FI T|F | T T | Tfhalanjo-10) T
X7 F T F F g i F | Burger] 0-10 F
X, |F|F|F| T T | 7| Thai lo-10] T
x |E|7T|7|E T | F |Burger] 560 | F
X0 T T | T T F T | ltalian | 10-30 F
X1 F F F F F F | Thai | 0-10 F
X9 T T | T T F F J Burger] 30-60 T

Which feature/attribute to split first?

000000 000000
000000 000000
Patrons? Type?
NOM\U" Fre HCWNGW
000 00 o © 00 0
0 0000 @ ® 00 00

dldea: good attribute splits examples into subsets that are
(ideally) all positive or all negative

Information Gain O stay

@ leave
| =-.5*logz(.5) - .5*logz(.5) =0.5+0.5=1
000000 000000
000000 000000
Patrons? Type?
NOM\UII ancwmnger
Q000 00 o @ 00 0
o0 1=0;P=13 @0O00©® O ® 00 o0
=0RS I=1:P=1/6 1=1; P=1/6 I=1; P=2/6 I=1; P=2/6
I=-(1/3*10g2(1/3)-2/3*log2(2/3); P=1/2 |=6/6*1=1
I*P=0.46
Information gain=1-0.46 = 0.54 Informationgain=1-1=0

« Information gain for asking Patrons is 0.54, for asking Type is 0

Overfitting, Early Stopping, and Pruning

dGrowing the tree until each leaf is pure will produce a large
tree that overfits.

dEarly stopping: we stop splitting if the impurity is below a
user threshold 6 > 0.

dPruning: we grow the tree in full until all leaves are pure
and the training error is zero. Then, we find subtrees that
cause overfitting and prune them

N,

JCMERCEL

Ensemble Model (Topic 15)

Example: Random forest

Train an ensemble of L decision trees on L different subsets
of the training set

A Define the ensemble output for a test instance as the
majority vote (for classification) or the average (for
regression) of the L trees

Instance
RandomeJ \
\
N\
S 3 &9 / >
Tree-1 Tree-2 Tree-n
Class-A Class-B Class-B

| I Majority-Voting } I

'Final-Class |

Bagging

dWe generate L (partly different) subsets of the training set
(dWe train L learners, each on a different subset
dThe ensemble output is defined as the vote or average

(JRandom forest: a variation of bagging

Boosting

dWeak learner: a learner that has probability of error < 1/2
(i.e., better than random guessing on binary classification).
JEx: decision trees with only 1 or 2 levels.

Strong learner: a learner that can have arbitrarily small
probability of error.
Ex: neural net

(dBoosting combines many weak learners to a strong learner

Ada Boost for 2 Classes

Initialization step: for each example X, set

D(x)=2 , where Nis the number of examples

N
lteration step (fort =1...T).

1. Find best weak classifier hy(x) using weights D(x)
2. Computethe error rate &; as

£ =2 00)1 =n, (¢

3. compute weight ay o;‘_classifier h;
a; =log ((1- &)/ &)
4. Foreachxi, D(x) =D(x/)-exp(aI[y' # hy(x)])

N
5. Normalize D(x) so that ZD(Xi)= 1
i=1

[fﬁnamx) =sign [¥ at, hy (x)]J

AdaBoost Example

ffinal (X): sigh G‘u +0.65 +0.92 >

= L -

+ —

f (x)=sign (042sign(3- x1)+ 0.65sign(7- x1)+ 0_923ign(>2<_ 4))

« Decision boundary non-linear

N,

JCMERCEL

Support Vector Machine (Topic 16)

SVM: Linearly Separable Case

« SVM: maximize the margin

A

« margin is twice the absolute value of distance b of the closest
example to the separating hyperplane

SVM: Linearly Separable Case

e Support vectors are samples closest to separating hyperplane

SVM: Optimal Hyperplane

2

e Maximize margin m=—
wi

e subject to constraints
w'x, +w,>1 if x, is positive example
wx +w,<-1 ifx, is negative example

o Lot z =1 if x, is positive example
z =-1 if x, is negative example

e Convert our problem to

minimize J(w):%”w”z

constrainedto z'(w'x, +w,)>1 Vi

e J(w) is a convex function, thus it has a single global minimum

SVM: Optimal Hyperplane

e Use Kuhn-Tucker theorem to convert our problem to:

maximize L, (ZOL ——ZZalanlszli

|111

constrained to «, >0 Vi and Zocizizo

e a ={a,..,0 ,}are new variables, one for each sample
e L (a)can be optimized by quadratic programming

L,(a) formulated in terms of a

e dependsonw and w,

SVM as Unconstrained Minimization

SVM objective can be rewritten as unconstrained optimization

Jw)= %”w” b Bgmax(o, 1-2zf(x.))

\ J

weights
regularization

loss f'unction

A

e zf(x;)>1: x; is onthe rightside
of the hyperplane and outside
margin, no loss

e zf(x,)=1: x, onthe margin, no
loss

e zf(x,)<1: x isinside margin, or
on the wrong side of the
hyperplane, contributes to loss

Non Linear Mapping

e Tosolve a non linear problem with a linear classifier
1. Project data x to high dimension using function @(x)
2. Find alinear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w* @(x) +w,

P(x) = (x,x?) ;

a
5o 066 oo O /
3 -2 0 1 2 3 4 O .
< < > /
R, R, R, .. ;

e |[n 2D, discriminant function is linear

ey ¥]x(l)
g x(z) =W, W, x(z) +W,

* In 1D, discriminant function is not linear g(x)=w,x+w,x* + w,

Non Linear SVM

Nonlinear discriminant function

g(x) = Z &

K(xi,x)

X;€S

. weight of support
g(x) o Z vector X,

+1

most important
_training samples,
i.e. support vectors

similarity
between x and
support vector x;

K(xi,x):exp(— L ||xi—x||2)

26°

	Slide 1
	Slide 2
	Slide 3: Neural Unit
	Slide 4: Linear Classification (perceptron)
	Slide 5: Depicting shallow neural networks
	Slide 6: With enough hidden units
	Slide 7: Universal approximation theorem
	Slide 8: Example of Multi Layer Perceptron (MLP)
	Slide 9: Linear Classification (perceptron)
	Slide 10: Work-around for Zero Gradients
	Slide 11: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 12: (general multi-class case) Cross-Entropy Loss
	Slide 13: Multi-variate functions Gradient Descent
	Slide 14: Multi-variate functions Gradient Descent
	Slide 15: How to Set Learning Rate ?
	Slide 16: Learning Rate
	Slide 17: Variable Learning Rate
	Slide 18: Computing Derivatives: Chain of Chain Rule
	Slide 19
	Slide 20: Activation Functions
	Slide 21: Activation Functions
	Slide 22: Data Preprocessing
	Slide 23: Batch Normalization
	Slide 24: Batch Normalization
	Slide 25: Transfer Learning with CNNs
	Slide 26: Batch Gradient Methods
	Slide 27: Stochastic or Online Methods
	Slide 28: SGD Follows Gradient Estimate Downhill
	Slide 29: Need for Decreasing Learning Rate
	Slide 30: Learning Rate Decay
	Slide 31: Momentum
	Slide 32: SGD Algorithm with Momentum
	Slide 33: Momentum
	Slide 34: Motivation
	Slide 35: AdaGrad
	Slide 36
	Slide 37: Convolutional Layer
	Slide 38: Convolutional Layer
	Slide 39: Convolutional Layer
	Slide 40: Basic CNN example (à la LeNet -1998)
	Slide 41: Common Structure: Encoder/Decoder
	Slide 42: Note: this result is equivalent to Bilinear Interpolation
	Slide 43
	Slide 44: U-net: expanding decoder with symmetry
	Slide 45
	Slide 46: N-gram models
	Slide 47: How many parameters do n-gram models have?
	Slide 48: A bigram model for Alice
	Slide 49: An n-gram model P(w | w1…wk) as a feedforward net (naively)
	Slide 50: 1D CNNs for text
	Slide 51: Recurrent Neural Network
	Slide 52: A Simple Recurrent Neural Network
	Slide 53: A Simple Recurrent Neural Network
	Slide 54: How to optimize Recurrent Neural Network?
	Slide 55: Training an RNN Language Model
	Slide 56: Generation with RNN Language Model
	Slide 57: Vanishing/exploding gradients
	Slide 58: Exploding gradients
	Slide 59: Vanishing gradients
	Slide 60: Problem of Encoder-decoder architecture
	Slide 61: Attention weights between words
	Slide 62: Casual or backward-looking self-attention
	Slide 63: Self-attention
	Slide 64
	Slide 65
	Slide 66: An example of Decision Tree
	Slide 67: Which feature/attribute to split first?
	Slide 68: Which feature/attribute to split first?
	Slide 69: Information Gain
	Slide 70: Overfitting, Early Stopping, and Pruning
	Slide 71
	Slide 72: Example: Random forest
	Slide 73: Bagging
	Slide 74: Boosting
	Slide 75: Ada Boost for 2 Classes
	Slide 76: AdaBoost Example
	Slide 77
	Slide 78: SVM: Linearly Separable Case
	Slide 79: SVM: Linearly Separable Case
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

