
CSE 176 Introduction to Machine Learning

Final Exam Review

Neural Network (Topic 9, 10, 11,12)

Neural Unit

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights

Input layer

Weighted sum

Non-linear activation function

Output value

bias

Linear Classification (perceptron)

❑For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

good

separation

by simple

threshold

* * *

“good”

linear transformation

from 2D space to 1D
1

0

f(w,x) = u (w0+w1x1+w2x2) f(w,x) ϵ {0,1}thresholding

can be formally

represented by this

prediction function

0

1

0

u(t)

t

unit step function
(a.k.a. Heaviside function)

label

label

Depicting shallow neural networks

Each parameter multiplies its source and adds to its target

With enough hidden units

❑… we can describe any 1D function to arbitrary accuracy

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function on a

compact subset of to arbitrary precision”

Example of Multi Layer Perceptron (MLP)

Bias
vector

Weight
matrix

Linear Classification (perceptron)

❑For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

good

separation

by simple

threshold

* * *

“good”

linear transformation

from 2D space to 1D
1

0

f(w,x) = u (w0+w1x1+w2x2) f(w,x) ϵ {0,1}thresholding

can be formally

represented by this

prediction function

0

1

0

u(t)

t

unit step function
(a.k.a. Heaviside function)

label

label

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

Relaxed predictions are often interpreted as prediction “probabilities”

1-Ϭ(t)

Perceptron:

approximate decision function u using its softer version (relaxation)

Ϭ(t) ≈ u(t)

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

(binary)

Cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)

Consider two probability distributions

over K classes (e.g. bass, salmon, sturgeon) : and

K-label perceptron’s output: for example

sum of Negative Log-Likelihoods (NLL)

salmonbass sturgeon

Multi-valued label gives one-hot distribution

k-th

index

Total loss:

cross entropy

(general multi-class case)

Cross-Entropy Loss

5-13

- direction of (negative) gradient at point x=(x1,x2) is direction
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

5-14

Example: for a function of two variables

update equation for a point x=(x1,x2)

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

Stop at a local minima where

x

How to Set Learning Rate ?

• If  too large, may
overshoot the local
minimum and possibly
never even converge

L(x)

x

• If  too small, too many
iterations to converge

x(2) x(1)x(4) x(3)

L(x)

Learning Rate

• Monitor learning rate by looking at how fast the
objective function decreases

L(x)

number of iterations

 or time

very high learning rate

high learning rate

low learning rate

good learning rate

Variable Learning Rate

k = 1

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1

If desired, can change learning rate  at each iteration

k = 1

x(1) = any initial guess

choose 

while ||L(x(k))|| > 

 choose (k)

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1

fixed α

gradient descent
variable α

gradient descent

Computing Derivatives: Chainof ChainRule

a
b=h(a)

∂d

∂c

∂d

∂c

d=h(c) d

localprev

c=h(b)

∂d
=
∂d ∂b ∂d

=
∂c

∂a ∂b ∂a ∂b ∂b

prev local local

direction of computation

• for each edge, with respect to the main variable at edge origin

• using chain rule with respect to the variable at edge end, if needed

∂
• Compute ∂d from the end backwards

example: if h(c)= c2, then
∂d

=
∂h

=2c
∂c ∂c

Computing Derivatives: Look at OneNode

w

x

v
y

h=a+b c=uh

already

computed

∂c

∂L

∂a ∂h ∂a ∂h

∂L
=
∂L ∂h

=
∂L

∂b ∂h ∂b ∂h

∂L
=
∂L ∂h

=
∂L

∂w ∂a ∂w ∂a

∂L
=
∂L ∂a

=
∂L

x

a= wx

∂v ∂b ∂v ∂b

b= vy

∂L
=
∂L ∂b

=
∂L

y

∂y ∂b ∂y ∂b

∂L
=
∂L ∂b

=
∂L

v

∂h ∂c ∂h ∂c

∂L
=
∂L ∂c

=
∂L

u

• Some of these partial derivatives are intermediate

• their values will not be used for gradient descent

direction of computation

∂x ∂a ∂x ∂a

∂L
=
∂L ∂a

=
∂L

w

Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Lecture 7 -

Activation Functions

Leaky ReLU

[Mass et al., 2013]

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha

(parameter)

Lecture 7 -

(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

Data Preprocessing

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

Lecture 7 -

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and

shift parameters:

Output,

Shape is N x D

Learning = ,

= will recover the

identity function!

Lecture 7 -

Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

Batch Gradient Methods

• Batch or deterministic gradient methods:

– Optimization methods that use all training samples
are batch or deterministic methods

• Somewhat confusing terminology

– Batch also used to describe minibatch used by
minibatch stochastic gradient descent

– Batch gradient descent implies use of full training set

– Batch size refers the size of a minibatch

Stochastic or Online Methods

• Those using a single sample are called

Stochastic or on-line

– On-line typically means continually created
samples drawn from a stream rather than

multiple passes over a fixed size training set

• Deep learning algorithms usually use more
than one but fewer than all samples

• Methods traditionally called minibatch or

minibatch stochastic now simply called

stochastic

Ex: (stochastic gradient descent - SGD)

SGD Follows Gradient Estimate Downhill

Algorithm: SGD update at training iteration k

A crucial parameter is the learning rate ε

At iteration k it is εk

Need for Decreasing Learning Rate

• True gradient of total cost function

– Becomes small and then 0

• One can use a fixed learning rate

• But SGD has a source of noise

– Random sampling of m training samples

• Gradient does not vanish even when arriving at a minimum

– Common to decay learning rate linearly
until iteration τ: εk=(1-α)ε0+αετ with α=k/τ

– After iteration τ, it is common to leave ε constant

• Often a small positive value in the range 0.0 to 1.0

Learning Rate Decay

• Decay learning rate

τ: εk=(1-α)ε0+αετ with α=k/τ

• Learning rate is calculated at each update

– (e.g. end of each mini-batch) as follows:

• Where lrate is learning rate for current epoch

• initial_lrate is specified as an argument to SGD

• decay is the decay rate which is greater than zero and

• iteration is the current update number

Momentum

Gradient Step

Momentum Step

Actual Step

SGD Algorithm with Momentum

Algorithm: SGD with momentum

Keras: The learning rate can be specified via the lr argument and

the momentum can be specified via the momentum argument.

Momentum
• SGD with momentum

Contour lines depict a quadratic loss function

with a poorly conditioned Hessian matrix.
Red path cutting across the contours depicts
path followed by momentum learning rule as
it minimizes this function

• Comparison to SGD without momentum
At each step we show path that would

be taken by SGD at that step

Poorly conditioned quadratic objective
Looks like a long narrow valley
with steep sides

Wastes time

Motivation

Harder

AdaGrad
• Individually adapts learning rates of all parameters

– Scale them inversely proportional to the sum of the
historical squared values of the gradient

• The AdaGrad Algorithm:

Performs well for some but not all deep learning

A 2D image f[i,j] can be filtered by a 2D kernel h[u,v] to produce
an output image g[i,j]:

This is called a convolution operation and written:

h is called “kernel” or “mask” or “filter” which
representing a given “window function”

2D Convolution

 
−= −=

++=
k

ku

k

kv

vjuifvuhjig],[],[],[

fhg =

convolution kernel

size

input output

Convolutional Layer

Convolve 3D image with 3D filter

• result is a 28x28x1 activation map, no zero padding used

input output
our notation for

such conv. layer

/ kernel

Convolutional Layer

1x1 convolutions make perfect sense

Example

• Input image of size 56x56x64

• Convolve with 32 filters, each of size 1x1x64

shape of each

1x1x64 kernel

64

applying

a bank of 32

1x1x64 filters/kernels

Basic CNN example (à la LeNet -1998)
3

2
x

3
2

1

greyscale

image

6
6 16

16

400
120

1
4

x
1

4

2
8

x
2

8

1
0

x
1

0

5
x
5

10-class

probabilities

84

NOTE: transformation of multi-dimensional arrays (tensors)

Common Structure: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla – TPAMI 2017

decoder

(upsampling part)
encoder

decoder upsamples encoder-generated features
important:

encoder convolutional layers are

typically pre-trained on image net

Note: this result is equivalent to Bilinear Interpolation

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 4.5 5 2.5

2 4 4.5 5 5.5 6 6.5 7 3.5

3 6 6.5 7 7.5 8 8.5 9 4.5

4 8 8.5 9 9.5 10 10.5 11 5.5

5 10 10.5 11 11.5 12 12.5 13 6.5

6 12 12.5 13 13.5 14 14.5 15 7.5

3 6 6.25 6.5 6.75 7 7.25 7.5 3.75

Input Image

Kernel

Output Image

kernel=3x3

stride=2
padding=1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Bilinear Interpolation is a special case of deconvolution.
The corresponding transpose convolution kernels exists for any stride (code https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183)

V. Dumoulin, and F. Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Deconvolution: Example

https://gist.github.com/mjstevens777/9d6771c45f444843f9e3dce6a401b183

Skip connections: concatenation

M

H
 x

 H

N M+N

feature map

“skipped”

from encoder

feature map

“upsampled”

insider decoder

H
 x

 H

feature vector dimensions
feature maps

concatenation

U-net: expanding decoder with symmetry

and many skip connections

RNN and Transformer (Topic 13)

N-gram models

N-gram models assume each word (event)

depends only on the previous n−1 words (events):
N

Unigram model: P(w(1) . . .w(N)) = ∏ P(w(i))
i=1

N

Bigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1))
i=1

N

Trigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1),w(i−2))
i=1

Independence assumptions where the n-th event in a sequence depends

only on the last n-1 events are called Markov assumptions (of order n−1).

How many parameters do n-gram models have?

Given a vocabulary V of |V| word types:

Unigram model:

Bigram model:

Trigram model:

so, for |V| = 104:

104 parameters

1012 parameters

108 parameters

|V| parameters

|V|2 parameters

|V|3 parameters

(one distribution P(w(i)) with |V| outcomes

[each w  V is one outcome])

• Alice was beginning to get very

tired of sitting by her sister on the

bank, and of having nothing to do:

once or twice she had peeped into the

book her sister was reading, but it

had no pictures or conversations in

it, 'and what is the use of a book,'

thought Alice 'without pictures or

conversation?'

P(w(i) = of | w(i–1) = tired) = 1

P(w(i) = of | w(i–1) = use) = 1

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3

P(w(i) = book | w(i–1) = the) = 1/3

P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice

An n-gram model P(w | w1…wk)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS)

We want to condition each word on k preceding words

Our (naive) model:

— [Naive]

Each input word wi  V is a V-dimensional one-hot vector v(w)

→ The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h

— The output layer is a softmax over V elements

P(w | w1…wk) = softmax(hW2 + b2)

1D CNNs for text

Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

— Filter size n = 2, stride = 2, no padding:

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

Recurrent Neural Network

❑Temporal nature in language processing

❑RNN deals with sequential input data stream like language.

A simple RNN

A Simple Recurrent Neural Network

❑RNN illustrated as a feed-forward network

ht = g(Uht−1 +Wxt)
yt = f (Vht)

A Simple Recurrent Neural Network

❑RNN unrolled in time

ht = g(Uht−1 +Wxt)
yt = f (Vht)

How to optimize Recurrent Neural Network?

❑Backpropagation through time

ht = g(Uht−1 +Wxt)
yt = f (Vht)

Training an RNN Language Model

❑Maximum likelihood estimation

Generation with RNN Language Model

❑Autoregressive (casual) generation

Vanishing/exploding gradients

❑Consider the gradient of Lt at step t, with respect to the
hidden state hk at some previous step k (k<t):

❑Recurrent multiplication

❑Gradients too small (vanishing gradient) or too large
(exploding gradient)

Exploding gradients

❑What is the problem?

❑We take a very large step in SGD

❑Solution: Gradient clipping

Vanishing gradients

❑What is the problem?

❑Parameters barely get updated (no learning)

❑Solution:
❑LSTMs: Long short-term memory networks

Problem of Encoder-decoder architecture

❑Context vector encodes EVERYTHING about input sequence

❑Context vector acts as a bottleneck

Attention weights between words

❑Example: English to French translation

❑Input: “The agreement on the

European Economic Area was

signed in August 1992.”

❑Output: “L’accord sur la zone

 économique européenne

a été signé en août 1992.”

Casual or backward-looking self-attention

❑Attends to all the inputs up to, and including, the current
one

Self-attention

❑Final Version

Decision Tree (Topic 14)

An example of Decision Tree

Which feature/attribute to split first?

❑Probably Patron and Type

Which feature/attribute to split first?

❑Idea: good attribute splits examples into subsets that are
(ideally) all positive or all negative

Information Gain stay

leave

I = -.5*log2(.5) - .5*log2(.5) = 0.5+0.5 = 1

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)-2/3*log2(2/3); P=1/2
I*P=0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 = 0

• Information gain for asking Patrons is 0.54, for asking Type is 0

Information gain = 1 - 0.46 = 0.54

I = 6/6*1 = 1

Overfitting, Early Stopping, and Pruning

❑Growing the tree until each leaf is pure will produce a large
tree that overfits.

❑Early stopping: we stop splitting if the impurity is below a
user threshold θ > 0.

❑Pruning: we grow the tree in full until all leaves are pure
and the training error is zero. Then, we find subtrees that
cause overfitting and prune them

Ensemble Model (Topic 15)

Example: Random forest

❑Train an ensemble of L decision trees on L different subsets
of the training set

❑Define the ensemble output for a test instance as the
majority vote (for classification) or the average (for
regression) of the L trees

Bagging

❑We generate L (partly different) subsets of the training set

❑We train L learners, each on a different subset

❑The ensemble output is defined as the vote or average

❑Random forest: a variation of bagging

Boosting

❑Weak learner: a learner that has probability of error < 1/2
(i.e., better than random guessing on binary classification).
❑Ex: decision trees with only 1 or 2 levels.

❑Strong learner: a learner that can have arbitrarily small
probability of error.
❑Ex: neural net

❑Boosting combines many weak learners to a strong learner

Ada Boost for 2 Classes

1. Find best weak classifier ht(x) using weights D(x)

2. Computethe error rate εt as
N

i [h (xi)] t

i ≠D(x)⋅I y
t ∑

i=1

ε =

3. compute weight αt of classifier ht

αt = log((1- εt)/ εt)

4. Foreach xi , D(xi) =D(xi)⋅exp(αt⋅I[yi ≠ht(xi)])

Initialization step: for each example x, set
D(x)=

1 , where N is the number of examples
N

Iteration step (for t =1…T):

5. Normalize D(xi) so that
N

∑
i=1

D(xi)=1

ffinal(x) =sign [∑α t ht (x)]

AdaBoost Example

ffinal (x)=

final
f (x)= sign(0.42sign(3-x)+0.65sign(7-x)+0.92sign(x-4))

1 1 2

• Decision boundary non-linear

Support Vector Machine (Topic 16)

SVM: Linearly Separable Case

• SVM: maximize the margin

• margin is twice the absolute value of distance b of the closest

example to the separating hyperplane

SVM: Linearly Separable Case

• Supportvectors are samples closest to separating hyperplane

	Slide 1
	Slide 2
	Slide 3: Neural Unit
	Slide 4: Linear Classification (perceptron)
	Slide 5: Depicting shallow neural networks
	Slide 6: With enough hidden units
	Slide 7: Universal approximation theorem
	Slide 8: Example of Multi Layer Perceptron (MLP)
	Slide 9: Linear Classification (perceptron)
	Slide 10: Work-around for Zero Gradients
	Slide 11: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 12: (general multi-class case) Cross-Entropy Loss
	Slide 13: Multi-variate functions Gradient Descent
	Slide 14: Multi-variate functions Gradient Descent
	Slide 15: How to Set Learning Rate ?
	Slide 16: Learning Rate
	Slide 17: Variable Learning Rate
	Slide 18: Computing Derivatives: Chain of Chain Rule
	Slide 19
	Slide 20: Activation Functions
	Slide 21: Activation Functions
	Slide 22: Data Preprocessing
	Slide 23: Batch Normalization
	Slide 24: Batch Normalization
	Slide 25: Transfer Learning with CNNs
	Slide 26: Batch Gradient Methods
	Slide 27: Stochastic or Online Methods
	Slide 28: SGD Follows Gradient Estimate Downhill
	Slide 29: Need for Decreasing Learning Rate
	Slide 30: Learning Rate Decay
	Slide 31: Momentum
	Slide 32: SGD Algorithm with Momentum
	Slide 33: Momentum
	Slide 34: Motivation
	Slide 35: AdaGrad
	Slide 36
	Slide 37: Convolutional Layer
	Slide 38: Convolutional Layer
	Slide 39: Convolutional Layer
	Slide 40: Basic CNN example (à la LeNet -1998)
	Slide 41: Common Structure: Encoder/Decoder
	Slide 42: Note: this result is equivalent to Bilinear Interpolation
	Slide 43
	Slide 44: U-net: expanding decoder with symmetry
	Slide 45
	Slide 46: N-gram models
	Slide 47: How many parameters do n-gram models have?
	Slide 48: A bigram model for Alice
	Slide 49: An n-gram model P(w | w1…wk) as a feedforward net (naively)
	Slide 50: 1D CNNs for text
	Slide 51: Recurrent Neural Network
	Slide 52: A Simple Recurrent Neural Network
	Slide 53: A Simple Recurrent Neural Network
	Slide 54: How to optimize Recurrent Neural Network?
	Slide 55: Training an RNN Language Model
	Slide 56: Generation with RNN Language Model
	Slide 57: Vanishing/exploding gradients
	Slide 58: Exploding gradients
	Slide 59: Vanishing gradients
	Slide 60: Problem of Encoder-decoder architecture
	Slide 61: Attention weights between words
	Slide 62: Casual or backward-looking self-attention
	Slide 63: Self-attention
	Slide 64
	Slide 65
	Slide 66: An example of Decision Tree
	Slide 67: Which feature/attribute to split first?
	Slide 68: Which feature/attribute to split first?
	Slide 69: Information Gain
	Slide 70: Overfitting, Early Stopping, and Pruning
	Slide 71
	Slide 72: Example: Random forest
	Slide 73: Bagging
	Slide 74: Boosting
	Slide 75: Ada Boost for 2 Classes
	Slide 76: AdaBoost Example
	Slide 77
	Slide 78: SVM: Linearly Separable Case
	Slide 79: SVM: Linearly Separable Case
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

