

CSE 176 Introduction to Machine Learning Lecture 1: Course Introduction

Some materials from Miguel Carreira-Perpiñán and Pascal Poupart

About the instructor

- Meng Tang, Assistant Professor in Computer Science and Engineering
- Please call me Meng (No Prof. Dr.)
- □10+ years of experience in machine learning and computer vision
- Ex-Meta, Amazon, Borealis AI, Disney

www.mengtang.org

What is Machine learning?

□Traditional computer science □Program computer for every task

□ Machine Learning

- Arthur Samuel (1959): **Machine learning** is the field of study that gives computers the ability to learn without being explicitly programmed.
- The capability of a machine to learn from data to imitate intelligent human behavior.

Applications of Machine learning

Autonomous driving

Hey Siri

Speech recognition

Recommendation system

Machine learning \neq Artificial Intelligence

- Machine learning is a specific approach within the broader field of artificial intelligence.
- Machine learning specifically involves the use of algorithms and statistical models for learning from data.
- □AI encompasses a wider range of techniques, including
 - □rule-based systems
 - expert systems
 - machine learning
 - and more

Machine learning \neq Artificial Intelligence

- □IBM DeepBlue (1997)
- Chess game
- Isophisticated algorithm, expert-system, and bruteforce computation
- □Not machine learning

- □Go game (more complex)
- □Use deep neural networks
- Trained on datasets of expert go game

Examples of representations

х

Polar coordinates

r

UCMERCED

How to represent raw sensory data?

Cannot hand-craft representation

5

□ Representation learning

Original Color Image

Matlab RGB Matrix

A deep learning model

Deep neural networks learn hierarchical representation

Deep Learning

Different AI systems

Major Types of Machine Learning

- □Supervised Learning
- □Unsupervised Learning
- □ Reinforcement Learning

Supervised Learning

Given pairs of input-output, learn to map the input to output

□Image classification

□Speech recognition

□ Regression (continuous output)

Example: Digit recognition

Simplest approach: Memorization

Supervised learning

□Nearest neighbor

		C	Databa	ase (6	0,000	imag	es)		
	{	/	(l	z	2	2	2	
• •	ŝ	3	3	5	4	4	4	4	nearest neighbor
4	5	5	5	5	6	6	6	6	
query	7	7	7	7	8	8	8	8	
	9	٩	٩	9	0	0	С	0	

More formally

QSupervised learning: Given a training set of examples of the form (x, f(x))

 $\Box x$ is the input, f(x) is the output

Return a function h that approximates f**h** is called the hypothesis

Generalization

□Key: a good hypothesis will generalize well (i.e., predict unseen examples correctly)

Ockham's razor: prefer the simplest hypothesis consistent with data

Unsupervised learning

Given unlabeled data, uncover the underlying structure or distribution of the data

In other words, find model that explains the data

Examples:

- Clustering
- Dimensionality reduction
- Generative models

Unsupervised image generation

□Which images are real? And which ones are fake?

Real

CelebA (Liu et al., 2015)

Fake!

StyleGAN2 (Karras et al., 2020)

Image generation: variational autoencoders, generative adversarial networks, diffusion models

Reinforcement learning

Training an agent to make decisions within an environment to maximize a cumulative reward

Game playing (e.g., AlphaGo)

Robot control

Goal: Learn to choose actions that maximize rewards

Game Playing

Example: Go (one of the oldest and hardest board games)

- **Agent:** player
- Environment: opponent
- State: board configuration
- Action: next stone location
- **Reward:** +1 win / -1 loose

2016: AlphaGo defeats top player Lee Sedol (4-1) Game 2 move 37: AlphaGo plays unexpected move (odds 1/10,000)

Other Types of machine learning

- Semi-supervised learning: Learning from a combination of labeled data and unlabeled data
- Transfer learning: applying knowledge learned from one task to another related task

This course

Supervised and **unsupervised** machine learning

- □ But not **reinforcement** learning
- □This course will discuss both algorithms and applications

Applications of Machine Learning

□Speech recognition: Siri, Cortana

- Natural Language Processing: Machine translation, dialog systems
- Computer vision: Image and video analysis
- Robotic Control: Autonomous vehicles
- Computational finance: Stock trading, portfolio optimization

Computer Vision

□Object detection and segmentation

Detectron2

Computer Vision

□ Face Detection

face detection around 00's

and now

Image Synthesis

Generative Adversarial Network (GAN)

Image Synthesis from Text

DALLE-2

"A photo of an astronaut riding a horse."

"A modern, sleek Cadillac drives along the Gardiner expressway with downtown Toronto in the background, with a lens flare, 50mm photography."

"A man walking through the bustling streets of Kowloon at night, lit by many bright neon shop signs, 50mm lens."

ChatGPT- https://chat.openai.com/

How to obtain A+ grade in undergraduate level machine learning course?

I Memory updated

Achieving an A+ in a machine learning course requires a mix of solid understanding, consistent effort, and strategic studying. Here's a plan that might help you get there:

1. Understand the Basics Deeply

- Math Foundation: Ensure you're comfortable with linear algebra, calculus, probability, and statistics, as these are crucial in understanding machine learning algorithms.
- **Conceptual Clarity:** Focus on truly understanding core concepts like supervised vs. unsupervised learning, overfitting vs. underfitting, and bias-variance tradeoff.

2. Attend Lectures and Participate Actively

- Engagement: Attend all lectures, and participate in discussions. Ask questions if something isn't clear.
- Lecture Notes: Take detailed notes during lectures and review them regularly.

3. Practice Coding Regularly

- **Programming Skills:** Practice coding in Python, and get comfortable with libraries like NumPy, pandas, Scikit-learn, TensorFlow, or PyTorch.
- Projects: Work on small projects or exercises that reinforce the algorithms and techniques discussed in class.

ChatGPT- https://chat.openai.com/

4. Complete Assignments Meticulously

- Timeliness: Start your assignments early to avoid last-minute rushes.
- **Thoroughness:** Ensure your assignments are thorough and well-documented. Understand every step you take.
- Extra Credit: If there's an opportunity for extra credit, take it!

5. Work on a Research Project

- **Deep Dive:** If the course offers a research project or a capstone, choose a topic that genuinely interests you, and dive deep into it.
- Novelty: Try to contribute something new or a unique perspective in your project.

6. Form Study Groups

- **Collaboration**: Join or form a study group. Teaching others is a great way to reinforce your own understanding.
- Peer Review: Get your peers to review your work and offer to review theirs.

7. Stay Consistent with Review and Practice

- **Regular Review:** Consistently review topics covered in class and revisit any areas where you're weak.
- **Practice Problems:** Regularly solve problems from textbooks or online platforms like Kaggle, Coursera, or LeetCode.

ChatGPT- https://chat.openai.com/

8. Prepare for Exams Strategically

- Study Guide: Create a study guide that covers all the key concepts, formulas, and algorithms.
- **Practice Exams:** Take practice exams under timed conditions to simulate the real exam environment.

9. Seek Help When Needed

- Office Hours: Utilize your professor's office hours to clarify doubts.
- Online Resources: Leverage online resources like Stack Overflow, YouTube tutorials, and MOOCs if you're stuck.

10. Focus on Time Management

- Schedule: Create a study schedule that balances course workload with review and practice.
- Prioritization: Prioritize tasks based on their importance and deadlines.

By staying disciplined and curious, you'll be well on your way to earning that A+!

Topics

Brief review of linear algebra, probability and statistics

Machine Learning Theory and Algorithms

□ Statistical Learning and Bayesian decision theory

Density estimation

Clustering and Mixture of Gaussians

Dimensionality reduction

□Logistic Regression and generalized linear models

Perceptron and multilayer neural networks

Convolutional Neural Networks

Decision trees and random forests

Ensemble learning: bagging and boosting

Gernel machines (support vector machines, SVMs)

Machine Learning Applications

Computer Vision

□Natural Language Processing (Large Language Model)

Text books

- Hal Daume III, Course in Machine Learning (2017), <u>http://ciml.info</u>
- Kevin Murphy, Probabilistic Machine Learning: An Introduction (2022), <u>https://probml.github.io/pmlbook/book1.html</u>
- Understanding Deep Learning by Simon J.D. Prince Published by MIT Press
 2023. <u>https://udlbook.github.io/udlbook</u>

Prerequisites

- Linear Algebra
- Linear Analysis
- Probability and Statistics
- Data structure and algorithms
- □ Python programming
 - Will use Pytorch or Tensorflow framework for deep learning related topics

Grading

Exams (40%)
 Midterm:20%
 Final exam: 20%
 Assignment (40%)
 4 assignments
 5%, 10%, 10%, 15%

Labs (20%)

□Use Python notebook via Google Colab for some labs and assignment

time type				
Python 3	•			
lware accelerato	r (?)			
O CPU	O T4 GPU	O A100 GPU	\bigcirc	V100 GPU
O TPU				

Course Materials

Course webpage

- <u>https://ucmercedcse176.github.io/</u>
- □ Syllabus
- Lecture notes
- Assignments and labs

□ Reference for background study:

- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville <u>https://www.deeplearningbook.org/</u>
- UvA Deep Learning Tutorials https://uvadlc-notebooks.readthedocs.io/en/latest/

Looking for Undergraduate Student Researcher

□Sponsored by Google-CAHSI research program

The goal of the CAHSI-Google IRP program is to build competitive research capacity of faculty and Hispanic students at CAHSI institutions.

<u>https://cahsi.utep.edu/cahsi-google-irp/</u>

Send CV and transcript to Meng (<u>mtang4@ucmerced.edu</u>)
Background in computer vision is required

Prof. Hyeran Jeon is also hiring for a project on machine learning and computer security.

