N,

UCMERCED

CSE 176 Introduction to Machine Learning

Lecture 10: Back Propagation

Some slides from O. Veksler, Y. Boykov, A. Ng, Y. LeCun, G. Hinton, A. Ranzato, R. Fergus

Recap: Neural Unit

Output value y

Non-linear activation function

Weighted sum

Weights w,
Input layer x;

Recap: Multi-layer perceptron

Bias

vector ,30 c R4 G /31 c RQ ,62 c RS 133 c R2

/

() (2
74

i

(S /0 S

|

Weight

o —) e R4x3 91 c R?x4 Q5 € R3%?2
matrix Hidden Hidden Hidden
Input, x
layer, h layer, ho layer, hs
D,L' =3 D1 =4 .D2 == D3 —

Example of Multi Layer Perceptron (MLP)

tanh(z)

y

Recap: activation function

Most Common:

Lo 10
— nZ
y= ¢ y= max(z 0)
0.5 —Z >
&+ e -
0.0 % 0
-0.5 5
—1.075 5 0 5 10 ~1%% -5 0 5 10
tanh RelLU

Rectified Linear Unit

N,

UCMERCED

Which of the followings would you consider to be valid activation functions?
(a) f(z)=—min(2,z)
(b) f(z) =09z +1

r7rm"n,(:lr:, 0.1z) if x > 0
| min(z,0.1z) if z <0

(c) f(z) =

rmcr,:c z,0.1z) if x > 0

(d) fz) =

| min(z, 0.1z) if x <0

How to train neural networks?

dTraining == learning weight and bias

Bias

vector B, ¢ R4 G B, € R2 B, € R3

=
M
-

i
i
7

Weight _—, g, e 03\ Q) e Rt @, e R
matr'XIn x Hidden Hidden Hidden
put, layer, hy layer, hs layer, hj
-D’L — Dl — -D2 — D3 -

Example of Multi Layer Perceptron (MLP)

"
| gzg
Y

Q“
9
e"

N,

JCMERCEL

Optimization via Gradient Descent

Optimization of continuous differentiable functions

J How to minimize a function of a single variable
2
f(x) = (x —5)
- Take derivative and setitto O
d
%f(x) =0
- May find a closed form solution

%f(a:):Q(m—S):() =

Multi-variate functions

Differentiation

What is “slope” of L(X;,X,) at a given point X=(Xy,X,)?

UCMERCED

Multi-variate functions

Differentiation

“heat-map” visualization of L

domain of L(x;,x,) in R?

What is “slope” of L(X;,X,) at a given point X=(Xy,X,)?

Multi-variate functions

Differentiation

“partial” derivatives

“heat-map” visualization of L

domain of L(x;,x,) in R?

OL : (L(an +€,22) — L(xhxz))
—— = lim
8331 e—0 €
Xo o
8_L — lim L(w17$2 + 6) — L(QC1; 332) 0x1
8.2172 e—0 € VL L
vector!
gradient oL

VL =

|

direction of the steepest
ascent at point x=(Xy,X,)

dz1

9L
6332

Multi-variate functions

Differentiation

The most common optimization “heat-map” visualization of L
method for continuous differentiable
(multi-variate) functions: domain of L(x;,x,) in R?

gradient descent

takeastep x' =x —a VL X2
towards lower values
of the function

negative
gradient

direction of the steepest
descent at point Xx=(Xy,X,)

Multi-variate functions

Gradient Descent

Example: for a function of two variables
- L(Xq,%;)

»

AL
85[32

i L

- direction of (negative) gradient at point x=(x,,x,) is directiog
of the steepest descent towards lower values of function

- magnitude of gradient at x=(x;,x,) gives the value of

Multi-variate functions

Gradient Descent

Example: for a function of two variables
- L(Xq,%;)

»

...

"aay
ey,
"y
"~
0
.
‘e

. Xy

update equation for a point X=(x;,X,)

x' =x—aVL

OF
— 8171
OF

ds

N,

0

Stop at a local minima where VL

Multi-variate functions

Gradient Descent

Example: for a function of two variables
 L(Xq,%5)

»

X2 sensitivity to initialisation !!

How to Set Learning Rate o.?

x' =x—aVL
If o too small, too many L(x) 1
iterations to converge
AN
X
If o too large, may L(X) 1

overshoot the local
minimum and possibly
never even converge

Variable Learning Rate

If desired, can change learning rate a at each iteration

k=1 k=1
x1) = any initial guess x) = any initial guess
choose 0, € choose g
while a||VL(xV)|| > & 7 | while of|VLxW¥)|| > £

x(+1) = x (K - o VL(x®)) choose al¥

K=k+ 1 x(+1) = x (K - oK) VL(x*)

k=k+1
fixed o variable a

gradient descent gradient descent M

Learning Rate
e Monitor learning rate by looking at how fast the

objective function decreases

L(x) very high learning rate

low learning rate

high learning rate

wning rate

N,

JCMERCEL

Derivative and Back Propagation

How to take derivatives w.r.t. weights?

dTraining == learning weight and bias

Bias

vector /30 c R4 G /81 c RQ ,82 c RS ,83 c R2

/

i
i

(8)

i

i

| gz‘g

3
©

@

Weight _—, g, e 03\ Q) e Rt @, e R
matr'XIn x Hidden Hidden Hidden
put, layer, hy layer, hs layer, hj
D; = D, =14 Dy =2 D3 =3

Example of Multi Layer Perceptron (MLP)

Computing Derivatives: Small Example

Small network f(x,y,z) = (X+y)z
Rewrite using

e gy
f(xy.z) =0z

each node does one 0 @
(z

operation

Computing Derivatives: Small Example

« Small network f(x,y,z) = (X+y)z
* Rewrite using
* Q=X+y
« f(x,y,2)=qQz
« Example of computing f(-2,5,-4)

Computing Derivatives: Small Example

Small network f(x,y,z) = (x+y)z
. . hain rule for f
Rewrite using q=x+y > f(X,y,2)=0z chain rule for t(y (x))
Want a a o oy
ox' oy’ oz OX 0Y OX
Compute % from the end backwards

 for each edge, with respect to the main variable at edge origin
using chain rule with respect to the variable at edge end, if needed

Computing Derivatives: Chain of Chain Rule

Compute 9 from the end backwards irection of computatior

 for each edge, with respect to the main variable at edge origin
using chain rule with respect to the variable at edge end, if needed

)) 616

od_oddb ad_@adgc
cda oboa ob ocob @C

prev local prev local local
y

example: if h(c)=c?, then

ad _ gh
oef ocC

=2C

X hl h2

Computing Derivatives Backwards

— S h(W2x +b?) h(W2ht +b2)| ——|h(W3h2 +b3)

> L(0)

Have loss function L(0)
oL oL

ow b

Need derivatives for all

Will compute derivatives from end to front, backwards

On the way will also compute intermediate derivatives

@ection of computation

oL

oh

Computing Derivatives: Look at One Node

« Simplified view at a network node
* INputs X,y come in
* node computes some function h(x,y)

Vv

Computing Derivatives: Look at One Node

« Ateach network node

* Inputs X,y come in

* nodes computes activation function h(x,y)
« Have loss function L(-)

Vv

< oL
a 2 already computed oh

Computing Derivatives: Look at One Node

oL oL
* Need x' oy

. Easyto compute local node derivatives &0 <N

OX ' oy

L _doh
OX oh oX

A\

oL
< R
A _ddh already computed oh

N,

Computing Derivatives: Look at One Node

* More complete view at a network node
* Inputs X,y come in, get multiplied by weight w and v
* node computes function h(wx,vy)
* node output h gets multiplied by u

Computing Derivatives: Look at One Node

- Tobe concrete, let h(j,j) =i +]

* h(i)) =1+

Computing Derivatives: Look at One Node

« Breakinto more computational nodes

« all computation happens inside nodes, not on edges

=2 oy @
(b=vy

N,

SICICIE

Computing Derivatives: Look at One Node

a _oLoa_d,
OW daow oOa @ection of computatior

A _dLoh _oL
0

a=\a ohoa oh

aL_ao already
@aL _dLda_da _Vy = = computed
= W 7 6h oC 8h 80
ox 0adxX éa ‘\ a
Gmad)—(c=ub) ¢
oL_odob_d

V m‘abm‘at@w
JL oL oh _ oL

@ ob ohob oh

d_adb_a,
&y obody ab

« Some of these partial derivatives are intermediate
 their values will not be used for gradient descent

Computing Derivatives: Look at One Node

d _oLoa _d «=8
oW daow oa @ection of computatior
a_ach _,
ca ohoa
a=w oL _olac_ already
QL dLoa_d _/ - computed
ox_ oaox oa ‘\ a_,
h=at+b (c=ubh) ..
oL d.ob d /

V) ov b ov aﬂ@8
A _ddb_a

oy oboy ob

V=6

« Examplewhenw=1,x=2,v=3,y=4,u=2,

EJ

oL L oh
ob ~ éh ab

A

Computing Derivatives: Vector Notation
 |nputs outputs are often vectors

X hi h2 0]
—— s h(Wx +b?) A N(W2ht +52)l ———h (Weh2 +b3)——| L(0)

* h(a)is afunction from R" to R™
 Chain rule generalizes to vector functions

Computing Derivatives: Vector Notation

* Let f(x): Rr—>RmM,
« Xisn-dimensional vector and output f(x) is m-dimensional vector

* Jacobian matrix

* hasm rows and n columns
* has ﬂ In row I, column |
X

)

Computing Derivatives: Vector Notation
« f(X): R>RMand g(x): R<—Rn

* f(g(x)): Rk—Rm

 Chain rule for vector functions

of _of
X g X

|1

Jacobian matrices

Vector Notation: Look at One Node

h, X,y are vectors

already computed Jacobian 2—:;
Need Jacobians 2L 2L
oX ' oy
. och oh

Easy to compute local node Jacobians ,

oL oL oh Xy -

= < Jacobian matrices
ox oh ox

X

already
y computed
oL _d oh

Vector Notation: Look at One Node

Can apply to matrices (and tensors) as well

But first vectorize matrix (or tensor)
Say W is 10 x5, stretch into 50x1 vector

Still denote Jacobian by oh
oW

&L _ 4L oh

OX oh ox

N
7~

already
computed

oL

Vector Notation: Look at One Node

oh ¢oh

ox oW

« Butthey can get very large (although sparse)

* Sayhis1000x 1, Wis 1000 x 500, then dh s 1000 x 500,000

« Easyto compute local node Jacobians

oW
al _d oh
ox oh ox
X already
h computed
w o (h=WXx oL
oh
AL 4L éh
oW ah oW

N,

Summary

dGradient Descent Optimization
(JChain rule of derivatives

(dBack propagation

	Slide 1
	Slide 2: Recap: Neural Unit
	Slide 3: Recap: Multi-layer perceptron
	Slide 4: Recap: activation function
	Slide 5
	Slide 6: How to train neural networks?
	Slide 7
	Slide 8: Optimization of continuous differentiable functions
	Slide 9: Multi-variate functions Differentiation
	Slide 10: Multi-variate functions Differentiation
	Slide 11: Multi-variate functions Differentiation
	Slide 12: Multi-variate functions Differentiation
	Slide 13: Multi-variate functions Gradient Descent
	Slide 14: Multi-variate functions Gradient Descent
	Slide 15: Multi-variate functions Gradient Descent
	Slide 16: How to Set Learning Rate ?
	Slide 17: Variable Learning Rate
	Slide 18: Learning Rate
	Slide 19
	Slide 20: How to take derivatives w.r.t. weights?
	Slide 21: Computing Derivatives: Small Example
	Slide 22: Computing Derivatives: Small Example
	Slide 23: Computing Derivatives: Small Example
	Slide 24: Computing Derivatives: Chain of Chain Rule
	Slide 25: Computing Derivatives Backwards
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Computing Derivatives: Vector Notation
	Slide 35: Computing Derivatives: Vector Notation
	Slide 36: Computing Derivatives: Vector Notation
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Summary

