
CSE 176 Introduction to Machine Learning
Lecture 10: Back Propagation

Some slides from O. Veksler, Y. Boykov, A. Ng, Y. LeCun, G. Hinton, A. Ranzato, R. Fergus



Recap: Neural Unit

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights

Input layer

Weighted sum

Non-linear activation function

Output value

bias



Recap: Multi-layer perceptron

Bias 
vector

Weight 
matrix

Example of Multi Layer Perceptron (MLP)



Recap: activation function

4

tanh ReLU
Rectified Linear Unit

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesus the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes the resulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networkswe’ ll reserve y to

mean thefinal output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesustheoutput of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows afinal schematic of abasic neural unit. In this example the unit

takes3 input values x1,x2, and x3, and computes aweighted sum, multiplying each

valueby aweight (w1, w2, andw3, respectively), addsthemtoabiastermb, and then

passestheresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputsx1, x2, and x3 (and abiasb that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networkswe’ ll reserve y to

mean thefinal output of theentirenetwork, leaving a astheactivation of an individual node.

Let’swalk through an example just to get an intuition. Let’ssuppose wehavea

unit with thefollowing weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would thisunit do with thefollowing input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y= s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e−0.87
= .70

In practice, thesigmoid isnot commonly used asan activation function. A function

that isvery similar but almost alwaysbetter is thetanh function shown in Fig. 7.3a;tanh

tanh isavariant of thesigmoid that ranges from -1 to +1:

y=
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU

when z ispositive, and 0 otherwise:

y= max(z,0) (7.6)

Most Common:





How to train neural networks?

Bias 
vector

Weight 
matrix

Example of Multi Layer Perceptron (MLP)

❑Training == learning weight and bias



Optimization via Gradient Descent



Optimization of continuous differentiable functions

❑ How to minimize a function of a single variable

-   Take derivative and set it to 0

-   May find a closed form solution



3D plot

x1

What is “slope” of  L(x1,x2) at a given point x=(x1,x2)?

x2

Multi-variate functions

Differentiation



Multi-variate functions

Differentiation

domain of L(x1,x2) in R2

“heat-map” visualization of  L

What is “slope” of  L(x1,x2) at a given point x=(x1,x2)?

range of  

L(x1,x2)

x1

x2



direction of the steepest

ascent at point x=(x1,x2)

gradient

“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of  L

range of  

L(x1,x2)

x1

x2

vector!



“partial” derivatives domain of L(x1,x2) in R2

Multi-variate functions

Differentiation

“heat-map” visualization of  L

range of  

L(x1,x2)

The most common optimization

method for continuous differentiable

(multi-variate) functions:

gradient descent
      take a step   

towards lower values 

of the function 

x1

x2

direction of the steepest

descent at point x=(x1,x2)

negative

gradient



5-13

- direction of (negative) gradient at point x=(x1,x2)  is direction 
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 



5-14

Example: for a function of two variables

update equation for a point x=(x1,x2) 

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 

Stop at a local minima where 



5-15

Example: for a function of two variables

sensitivity to initialisation !!

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 



x

How to Set Learning Rate ?

• If   too large, may 
overshoot the local 
minimum and possibly 
never even converge

L(x)

x

• If   too small, too many 
iterations to converge

x(2) x(1)x(4) x(3)

L(x)



Variable Learning Rate

k = 1  

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1 

If desired, can change learning rate  at each iteration

k = 1  

x(1) = any initial guess

choose  

while ||L(x(k))|| > 

 choose (k) 

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1 

fixed α 

gradient descent
variable α 

gradient descent



Learning Rate

• Monitor learning rate by looking at how fast the 
objective function decreases

L(x)

number of iterations

          or time

very high learning rate

high learning rate

low learning rate

good learning rate



Derivative and Back Propagation



How to take derivatives w.r.t. weights?

Bias 
vector

Weight 
matrix

Example of Multi Layer Perceptron (MLP)

❑Training == learning weight and bias



Computing Derivatives: SmallExample

• Small network f(x,y,z) = (x+y)z

• Rewrite using

• q=x+y

• f(x,y,z) = qz

• each node does one 

operation

x

y

z

q=x+y
f=qz



Computing Derivatives: SmallExample

x

y

• Small network f(x,y,z) = (x+y)z

• Rewrite using

• q=x+y

• f(x,y,z) = qz

• Exampleof computing f(-2,5,-4)

z

q=x+y
f=qz

-2

5

-4

3
-12



Computing Derivatives: SmallExample

x

y

z

q=x+y

f=qz

-2

5

-4

3

-12

∂x ∂y ∂z

∂f ∂f ∂f
, ,

• Small network f(x,y,z) = (x+y)z

• Rewrite using q=x+y ⇒ f(x,y,z) =qz

• Want

∂f

∂f
=1

∂q

∂f
= z=−4

∂x ∂q ∂x

∂f
=
∂f ∂q

=−4

4
∂y ∂q ∂y

∂f
=
∂f ∂q

=−

∂z

∂f
= q=3

∂
• for each edge, with respect to the main variable at edge origin

• using chain rule with respect to the variable at edgeend, if needed

• Compute ∂f from the end backwards

chain rule for f(y(x))

∂f
=
∂f ∂y

∂x ∂y ∂x



Computing Derivatives: Chainof ChainRule

a
b=h(a)

∂d

∂c

∂d

∂c

d=h(c) d

localprev

c=h(b)

∂d
=
∂d ∂b ∂d

=
∂c

∂a ∂b ∂a ∂b ∂b

prev local local

direction of computation

• for each edge, with respect to the main variable at edge origin

• using chain rule with respect to the variable at edge end, if needed

∂
• Compute ∂d from the end backwards

example: if h(c)= c2, then
∂d

=
∂h

=2c
∂c ∂c



Computing Derivatives Backwards

x
h(W1x +b1 )

h1

h(W2h1 +b2 )
h2

h(W3h2 +b3 )
o

direction of computation

• Have loss function L(o)

• Need derivatives for all
∂w ∂b

∂L ∂L
,

• Will compute derivatives from end to front, backwards

• On the way will also compute intermediate derivatives ∂L

∂h

L(o)



Computing Derivatives: Look at OneNode

• Simplified view at a network node

• inputs x,y come in

• node computes some function h(x,y)

x

y h(x,y) h



Computing Derivatives: Look at OneNode

x

y h(x,y) h

already computed
∂L

∂h

• At each network node

• inputs x,y come in

• nodes computes activation function h(x,y)

• Have loss function L(·)

∂L

∂x
?

?
∂L

∂y



Computing Derivatives: Look at OneNode

∂L ∂L

∂x
,
∂y

• Need

•
∂x ∂y

Easyto compute local node derivatives ∂h
,
∂h

x

y h(x,y) h

already computed

∂L
= 
∂L ∂h

∂x ∂h ∂x

∂y ∂h ∂y

∂L
=
∂L ∂h ∂h

∂L



Computing Derivatives: Look at OneNode

• More complete view at a network node

• inputs x,y come in, get multiplied by weight w and v

• node computes function h(wx,vy)

• node output h gets multiplied by u

wx

vy h(wx,vy) uh



Computing Derivatives: Look at OneNode

wx

vy h(wx,vy) uh

• Tobe concrete, let h(i,j) = i + j



• all computation happens inside nodes, not on edges

Computing Derivatives: Look at OneNode

wx

vy h(wx,vy) uh

a= wx
w

x

v

y
b= vy

h= a+b c=uh

• h(i,j) = i + j

• Break into more computational nodes



Computing Derivatives: Look at OneNode

w

x

v
y

h=a+b c=uh

already 

computed

∂c

∂L

∂a ∂h ∂a ∂h

∂L
=
∂L ∂h

=
∂L

∂b ∂h ∂b ∂h

∂L
=
∂L ∂h

=
∂L

∂w ∂a ∂w ∂a

∂L
=
∂L ∂a

=
∂L

x

a= wx

∂v ∂b ∂v ∂b

b= vy

∂L
=
∂L ∂b

=
∂L

y

∂y ∂b ∂y ∂b

∂L
=
∂L ∂b

=
∂L

v

∂h ∂c ∂h ∂c

∂L
=
∂L ∂c

=
∂L

u

• Some of these partial derivatives are intermediate

• their values will not be used for gradient descent

direction of computation

∂x ∂a ∂x ∂a

∂L
=
∂L ∂a

=
∂L

w



Computing Derivatives: Look at OneNode

a= wx
w

v
y

h=a+b c=uh

already 

computed

∂c

∂L
=2

∂h ∂c ∂h

∂a ∂h ∂a

∂L
=
∂L ∂h

∂L ∂h

∂b
=
∂h ∂b

b= vy ∂L

= 4

=4

∂L
=
∂L ∂a

∂w ∂a ∂w ∂a
=
∂L

x=8

∂x ∂a ∂x ∂a

x ∂L
=
∂L ∂a

=
∂L

w = 4

∂v
=
∂b ∂v

=
∂b

y=8
∂L ∂L ∂b ∂L

∂y ∂b ∂y ∂b

∂L
=
∂L ∂b

=
∂L

v=6

∂L
=
∂L ∂c

= 2u= 4

• Examplewhen w =1, x=2, v=3, y =4, u =2,

direction of computation

∂c

∂L
=2



Computing Derivatives: Vector Notation
• Inputs outputs are often vectors

x
h(W1x +b1 )

h1

h(W2h1 +b2 )
h2

h(W3h2 +b3 )
o

L(o)

• h(a) is a function from Rn to Rm

• Chain rule generalizes to vector functions



Computing Derivatives: Vector Notation

∂xj

∂fi

• has m rows and n columns

• has in row i, column j

• Let f(x): Rn→Rm,

• x is n-dimensional vector and output f(x) is m-dimensional vector

• Jacobian matrix



Computing Derivatives: Vector Notation

• f(x): Rn→Rm and g(x): Rk→Rn

• f(g(x)): Rk→Rm

• Chain rule for vector functions

∂f
=
∂f ∂g

∂x ∂g∂x

Jacobian matrices



Vector Notation: Look at OneNode

∂x
,
∂y

Need Jacobians

• Easy to compute local node Jacobians
∂x ∂y

∂h ∂h
,

x

y h(x,y) h

∂L ∂L ∂h

∂x
=
∂h ∂x

∂y ∂h ∂y

∂L
=
∂L ∂h

already 

computed

∂L

∂h

Jacobian matrices

• h, x, yare vectors

• already computed Jacobian

• ∂L ∂L

∂L

∂h



Vector Notation: Look at OneNode

x

W h= Wx
h

∂L

∂W ∂h ∂W
=
∂L ∂h

already 

computed

∂L

∂h

Still denote Jacobian by
∂W

∂L
= 
∂L ∂h

∂x ∂h ∂x

• Canapply to matrices (and tensors) aswell

• But first vectorize matrix (or tensor)

• Say W is 10 x 5, stretch into 50x1 vector
• ∂h



Vector Notation: Look at OneNode

• Easy to compute local node Jacobians
∂x ∂W

∂h ∂h
,

x

W h= Wx
h

∂W ∂h ∂W

∂L ∂L ∂h
=

already 

computed

∂L

∂h

• But they can get very large (although sparse)

• Sayh is 1000 x 1, W is 1000 x 500, then ∂h is 1000 x 500,000
∂W

∂L
= 
∂L ∂h

∂x ∂h ∂x



Summary

❑Gradient Descent Optimization

❑Chain rule of derivatives

❑Back propagation


	Slide 1
	Slide 2: Recap: Neural Unit
	Slide 3: Recap: Multi-layer perceptron
	Slide 4: Recap: activation function
	Slide 5
	Slide 6: How to train neural networks?
	Slide 7
	Slide 8: Optimization of continuous differentiable functions
	Slide 9: Multi-variate functions Differentiation
	Slide 10: Multi-variate functions Differentiation
	Slide 11: Multi-variate functions Differentiation
	Slide 12: Multi-variate functions Differentiation
	Slide 13: Multi-variate functions Gradient Descent
	Slide 14: Multi-variate functions Gradient Descent
	Slide 15: Multi-variate functions Gradient Descent
	Slide 16: How to Set Learning Rate ?
	Slide 17: Variable Learning Rate
	Slide 18: Learning Rate
	Slide 19
	Slide 20: How to take derivatives w.r.t. weights?
	Slide 21: Computing Derivatives: Small Example
	Slide 22: Computing Derivatives: Small Example
	Slide 23: Computing Derivatives: Small Example
	Slide 24: Computing Derivatives: Chain of Chain Rule
	Slide 25: Computing Derivatives Backwards
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Computing Derivatives: Vector Notation
	Slide 35: Computing Derivatives: Vector Notation
	Slide 36: Computing Derivatives: Vector Notation
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Summary

