
CSE 176 Introduction to Machine Learning
Lecture 11: Training Neural Network

Some slides from Fei-fei Li



From last lectures:

Shallow & Deep Neural network, Losses, Optimization



Depicting shallow neural networks

Each parameter multiplies its source and adds to its target



With enough hidden units

❑… we can describe any 1D function to arbitrary accuracy



Example of Multi Layer Perceptron (MLP)

Bias 
vector

Weight 
matrix



Perceptron approximation:

Consider two probability distributions  

over two classes (e.g. bass or salmon) :                      and

(binary) 

Cross-entropy loss:

salmonbass

Cross-Entropy Loss (related to logistic regression loss)



Consider two probability distributions  

over K classes (e.g. bass, salmon, sturgeon) :            and

K-label perceptron’s output:                       for example

sum of Negative Log-Likelihoods  (NLL)

salmonbass sturgeon

Multi-valued label              gives one-hot distribution   

k-th 

index

Total loss:

cross entropy

(general multi-class case)

Cross-Entropy Loss



From last lecture: Gradient Descent

❑Example: for a function of two variables

update equation for a point x=(x1,x2) 

x1

x2

L(x1,x2) 

Stop at a local minima where 



From last lecture: Backpropogation
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Today

❑Deep learning hardware

❑Deep learning software

❑Tricks for training neural networks
❑Activation function

❑Data Preprocessing

❑Batch normalization

❑Transfer learning



Deep Learning Hardware



Inside a computer



Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en


Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en


CPU vs GPU

Cores Clock 

Speed

Memory Price Speed (throughput)

CPU

(Intel Core 
i9-7900k)

10 4.3

GHz

System 

RAM

$385 ~640 GFLOPS FP32

GPU 

(NVIDIA 
RTX 3090)

10496 1.6

GHz

24 GB 

GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores, 

but each core is 
much faster and 
much more 

capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 

“dumber”; great for 
parallel tasks



Example: Matrix Multiplication

A x B
B x C

A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)



CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

66x 67x 71x 64x 76x





CPU / GPU Communication

Model 

is here
Data is here



CPU / GPU Communication

Model 

is here
Data is here

If you aren’t careful, training can 

bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD

- Use multiple CPU threads 
to prefetch data



Deep Learning Software



A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed 
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)



A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed 
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

We’ll focus on this



Deep Learning Framework

(1) Quick to develop and test new ideas

(2) Automatically compute gradients

(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, 
OpenCL, etc)



Computational Graphs
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Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Bad:

- Have to compute 

our own gradients

- Can’t run on GPU

Good:

Clean API, easy to 

write numeric code



Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!

Lecture 6 - 40



Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!



Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 

arrays on a different device!



PyTorch
(More details)



Pytorch fundamental concepts

❑torch.Tensor: Like a numpy array, but can run on GPU

❑torch.autograd: Package for building computational 
graphs out of Tensors, and automatically computing 
gradients

❑torch.nn.Module: A neural network layer; may store 
state or learnable weights



Pytorch:Tensor

Running example: Train 

a two-layer ReLU 

network on random data 

with L2 loss



Create random tensors 

for data and weights

Pytorch:Tensor



Forward pass: compute 

predictions and loss

Pytorch:Tensor



Backward pass: 

manually compute 

gradients

Pytorch:Tensor



Gradient descent 

step on weights

Pytorch:Tensor



To run on GPU, just use a 

different device!

Pytorch:Tensor



Creating Tensors with 

requires_grad=True enables 

autograd

Operations on Tensors with 

requires_grad=True cause PyTorch 

to build a computational graph

Pytorch:Autograd



Forward pass looks exactly 

the same as before, but we 

don’t need to track 

intermediate values -

PyTorch keeps track of them 
for us in the graph

Pytorch:Autograd



Compute gradient of loss 

with respect to w1 and w2

Pytorch:Autograd



Make gradient step on weights, then zero

them. Torch.no_grad means “don’t build a

computational graph for this part”

Pytorch:Autograd



PyTorch methods that end in underscore

modify the Tensor in-place; methods that

don’t return a new Tensor

Pytorch:Autograd



PyTorch: nn

Higher-level wrapper for 

working with neural nets

Use this! It will make your life 
easier



Define our model as a 

sequence of layers; each 

layer is an object that 

holds learnable weights

PyTorch: nn



Forward pass: feed data to 

model, and compute loss

PyTorch: nn



Forward pass: feed data to 

model, and compute loss

torch.nn.functional has useful 

helpers like loss functions

PyTorch: nn



Backward pass: compute 

gradient with respect to all 

model weights (they have 

requires_grad=True)

PyTorch: nn



Make gradient step on 

each model parameter 

(with gradients disabled)

PyTorch: nn



Use an optimizer for 

different update rules

PyTorch: nn



After computing gradients, use 

optimizer to update params 

and zero gradients

PyTorch: nn



PyTorch: nn

Define new Modules

A PyTorch Module is a neural net 

layer; it inputs and outputs Tensors

Modules can contain weights or other 
modules

You can define your own Modules 

using autograd!



PyTorch: nn

Define new Modules

Define our whole model 

as a single Module



PyTorch: nn

Define new Modules

Initializer sets up two 

children (Modules can 

contain modules)



PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 

https://github.com/pytorch/vision

https://github.com/pytorch/vision


PyTorch: torch.utils.tensorboard

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around 

Tensorflow’s web-based 

visualization tool.

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/


Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism: 

split computation 

graph into parts & 

distribute to GPUs/ 

nodes

Data parallelism: split 

minibatch into chunks & 

distribute to GPUs/ nodes



Tricks for training neural networks



Where we are now...
Learning network parameters through optimization

Landscape image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Lecture 7 -

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/


Where we are now...

Lecture 7 -

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph 

(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient



Activation Functions

Lecture 7 -



Activation Functions

Lecture 7 -



Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Lecture 7 -



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they have nice interpretation as a 

saturating “firing rate” of a neuron

Lecture 7 -

1. Saturated neurons “kill” the 

gradients



Sigmoid

Lecture 7 -

1. Saturated neurons “kill” the 

gradients

2. exp() is a bit expensive

Activation Functions

- Squashes numbers to range [0,1]

- Historically popular since they have nice interpretation as a 

saturating “firing rate” of a neuron



Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- still kills gradients when saturated :(

[LeCun et al., 1991]

Lecture 7 -



Activation Functions

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Lecture 7 -



ReLU

gate

x

What happens when x = -10? 

What happens when x = 0?

What happens when x = 10?

Lecture 7 -



Activation Functions

Leaky ReLU

[Mass et al., 2013] 

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Lecture 7 -



Activation Functions

Leaky ReLU

[Mass et al., 2013] 

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha 

(parameter)

Lecture 7 -



TLDR: In practice:

Lecture 7 -

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU

- To squeeze out some marginal gains

- Don’t use sigmoid or tanh



Data Preprocessing

Lecture 7 -



Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -



(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

Data Preprocessing



Data Preprocessing

In practice, you may also see PCA and Whitening of the data

(data has diagonal 

covariance matrix)

Lecture 7 -

(covariance matrix is the 

identity matrix)



Fei-Fei Li & Ranjay Krishna & Danfei Xu Lecture 7 - April 20, 2021

Data Preprocessing

Before normalization: classification loss 

very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 

changes in weights; easier to optimize



TLDR: In practice for Images: center only

Lecture 7 -

Divide by per-channel std (e.g. ResNet) 

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet) 

(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet) 

(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Not common

to do PCA or 

whitening



Batch Normalization

Lecture 7 -



Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make 

each dimension zero-mean unit-variance, apply:

[Ioffe and Szegedy, 2015]

this is a vanilla 

differentiable function...

Lecture 7 -



Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x, 

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

Lecture 7 -



Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x, 

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 

shift parameters:

Output,

Shape is N x D

Learning = ,

= will recover the 

identity function!

Lecture 7 -



Per-channel mean, 
shape is D

Per-channel var, 

shape is D

Normalized x, 

Shape is N x D

Output,

Shape is N x D

Batch Normalization: Test-Time Estimates depend on minibatch; 

can’t do this at test-time!

Lecture 7 -

Input:

Learnable scale and 

shift parameters:

Learning = ,

= will recover the 

identity function!



Input: Per-channel mean, 

shape is D

Per-channel var, 

shape is D

Normalized x, 

Shape is N x D

Batch Normalization: Test-Time

Learnable scale and 

shift parameters:

Output,

Shape is N x D

(Running) average of 

values seen during training

(Running) average of 

values seen during training

Lecture 7 -

During testing batchnorm 

becomes a linear operator! 

Can be fused with the previous 

fully-connected or conv layer



Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 

Connected or Convolutional layers, 

and before nonlinearity.

Lecture 7 -



Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Lecture 7 -

- Makes deep networks much easier to train!

- Improves gradient flow

- Allows higher learning rates, faster convergence

- Networks become more robust to initialization

- Acts as regularization during training

- Zero overhead at test-time: can be fused with conv!

- Behaves differently during training and testing: this 

is a very common source of bugs!



Transfer learning



Transfer Learning with CNNs



Transfer Learning with CNNs

AlexNet:

64 x 3 x 11 x 11



Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space



Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014



Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014



Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for

Generic Visual Recognition”, ICML 2014

Finetuned fromAlexNet



Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize 

this and train

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

Conv-512

Conv-512

MaxPool

FC-C

FC-4096

FC-4096

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

3. Bigger dataset

Freeze these

Lower learning rate 
when finetuning; 
1/10 of original LR 

is good starting 
point

Train these

With bigger 

dataset, train 
more layers



Summary

We looked in detail at:

Lecture 7 -

- Activation Functions (use ReLU)

- Data Preprocessing (images: subtract mean)

- Batch Normalization (use this!)

- Transfer learning (use this if you can!)

TLDRs



Optimization



Optimization is essential for DL

• Deep Learning is an instance of a recipe:

1. Specification of a dataset

2. A cost function

3. A model

4. An optimization procedure

today



Our focus is on one case of optimization

• Find parameters θ of a neural network that  

significantly reduces a cost function J(θ)

– It typically includes:
• a performance measure evaluated on an entire training  

set as well as an additional regularization term



Keras for MNIST Neural Network

• # Neural Network

• import keras

• from keras.datasets import mnist

• from keras.layers import Dense

• from keras.models import Sequential

• (x_train, y_train), (x_test, y_test) = mnist.load_data()

• num_classes=10

• image_vector_size=28*28

• x_train = x_train.reshape(x_train.shape[0], image_vector_size)

• x_test = x_test.reshape(x_test.shape[0], image_vector_size)

• y_train = keras.utils.to_categorical(y_train, num_classes)

• y_test = keras.utils.to_categorical(y_test, num_classes)

• image_size = 784 model = Sequential()

• model.add(Dense(units=32, activation='sigmoid', input_shape=(image_size,)))

• model.add(Dense(units=num_classes, activation='softmax'))

• model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])

• history = model.fit(x_train, y_train, batch_size=128, epochs=10,verbose=False,validation_split=.1)

• loss,accuracy = model.evaluate(x_test, y_test, verbose=False)



Optimization methods

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

http://hduongtrong.github.io/2015/11/23/coordinate-descent/


Optimization Problem in DL

• Optimization is an extremely difficult task for DL

– Traditional ML: careful design of objective function  
and constraints to ensure convex optimization

– When training neural networks, we must confront  
nonconvex cases 



Batch Gradient Methods

• Batch or deterministic gradient methods:

– Optimization methods that use all training samples  
are batch or deterministic methods

• Somewhat confusing terminology

– Batch also used to describe minibatch used by  
minibatch stochastic gradient descent

– Batch gradient descent implies use of full training  set

– Batch size refers the size of a minibatch



Stochastic or Online Methods

• Those using a single sample are called

Stochastic or on-line

– On-line typically means continually created  
samples drawn from a stream rather than 

multiple passes over a fixed  size training set

• Deep learning algorithms usually use more 
than one but fewer than all samples

• Methods traditionally called minibatch or 

minibatch  stochastic now simply called

stochastic

Ex: (stochastic gradient descent - SGD)



Minibatch Size
• Driven by following:

– Larger batches→more accurate gradient

– If all examples processed in parallel, amount of  
memory scales with batch size

• This is a limiting factor in batch size

– GPU architectures more efficient with sizes power of 2

• Range from 32 to 256, sometimes with 16 for large models



SGD and Generalization Error

• Minibatch SGD follows the gradient of the true

generalization error

– as long as the examples are repeated

• Implementations of minibatch SGD

– Shuffle once and pass through multiple number of times

J *( )= E(x , y )~p
data

(L( f (x;), y))



SGD Follows Gradient Estimate Downhill

Algorithm: SGD update at training iteration k

A crucial parameter is the learning rate ε

At iteration k it is εk



Choice of Learning Rate

Too small learning rate  

will take too long

Too large, the next point will  
perpetually bounce haphazardly  
across the bottom of the well

If gradient is small, then can safely try a 

larger learning rate,  which compensates 
for the small gradient  and results in a 

larger step size

https://developers.google.com/machine-learning/crash-course/reducing-loss/learning-rate



Need for Decreasing Learning Rate

• True gradient of total cost function

– Becomes small and then 0

• One can use a fixed learning rate

• But SGD has a source of noise

– Random sampling of m training samples

• Gradient does not vanish even when arriving at a minimum

– Common to decay learning rate linearly 
until  iteration τ: εk=(1-α)ε0+αετ with α=k/τ

– After iteration τ, it is common to leave ε constant

• Often a small positive value in the range 0.0 to 1.0



Learning Rate Decay

• Decay learning rate

τ: εk=(1-α)ε0+αετ with α=k/τ

• Learning rate is calculated at each update

– (e.g. end of each mini-batch) as follows:

• Where lrate is learning rate for current epoch

• initial_lrate is specified as an argument to SGD

• decay is the decay rate which is greater than zero and

• iteration is the current update number



Momentum Method

• SGD is a popular optimization strategy but it 

can be slow

• Momentum method accelerates learning, when:

– Facing high curvature

– Noisy gradients

• It works by accumulating the moving average 

of past  gradients and moves in that direction 

while  exponentially decaying



Gradient Descent with Momentum

• Now can set a higher learning rate

• Gradient descent with momentum converges  

faster than standard gradient descent

• Taking large steps in w2 direction and small  

steps in w1 direction slows down algorithm

w2

w1

• Momentum reduces oscillation in w2 direction

https://www.andreaperlato.com/aipost/gradient-descent-with-momentum/



Momentum Definition

• Introduce velocity variable v

• This is the direction and speed at which  

parameters move through parameter space

• Name momentum comes from physics & is mass 

times velocity

• The momentum algorithm assumes unit mass

• A hyperparameter α ε [0,1) determines  
exponential decay of v



Momentum Update Rule

• The update rule is given by

• The velocity v accumulates the gradient

elements

• The larger α is relative to ε, the more  

previous gradients affect the current direction

• The SGD algorithm with momentum is next



Momentum

Gradient Step

Momentum Step

Actual Step



SGD Algorithm with Momentum

Algorithm: SGD with momentum

Keras: The learning rate can be specified via the lr argument and  

the momentum can be specified via the momentum argument.



Momentum
• SGD with momentum

Contour lines depict a quadratic loss function  

with a poorly conditioned Hessian matrix.
Red path cutting across the contours depicts  
path followed by momentum learning rule as  
it minimizes this function

• Comparison to SGD without momentum
At each step we show path that would  

be taken by SGD at that step

Poorly conditioned quadratic objective  
Looks like a long narrow valley
with steep sides

Wastes time



Importance of Learning Rate

• Learning rate is the most difficult hyperparameter

to set

• It significantly affects model performance

• Cost is highly sensitive to some directions in  

parameter space and insensitive to others

– Momentum helps but introduces another  
hyperparameter

– Other approach

• If direction of sensitivity is axis aligned, have a separate 

learning  rate for each parameter and adjust them 

throughput  learning



Motivation

Nice (all features are equally important)



Motivation

Harder



AdaGrad
• Individually adapts learning rates of all parameters

– Scale them inversely proportional to the sum of the 
historical squared values of the gradient

• The AdaGrad Algorithm:

Performs well for some but not all deep learning



Performance with CNN

Convolutional neural networks training cost.

(left) Training cost for the first three epochs.
(right) Training cost over 45 epochs.
CIFAR-10 with c64-c64-c128-1000 architecture.
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