
CSE 176 Introduction to Machine Learning
Lecture 11: Training Neural Network

Some slides from Fei-fei Li

From last lectures:

Shallow & Deep Neural network, Losses, Optimization

Depicting shallow neural networks

Each parameter multiplies its source and adds to its target

With enough hidden units

❑… we can describe any 1D function to arbitrary accuracy

Example of Multi Layer Perceptron (MLP)

Bias
vector

Weight
matrix

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

(binary)

Cross-entropy loss:

salmonbass

Cross-Entropy Loss (related to logistic regression loss)

Consider two probability distributions

over K classes (e.g. bass, salmon, sturgeon) : and

K-label perceptron’s output: for example

sum of Negative Log-Likelihoods (NLL)

salmonbass sturgeon

Multi-valued label gives one-hot distribution

k-th

index

Total loss:

cross entropy

(general multi-class case)

Cross-Entropy Loss

From last lecture: Gradient Descent

❑Example: for a function of two variables

update equation for a point x=(x1,x2)

x1

x2

L(x1,x2)

Stop at a local minima where

From last lecture: Backpropogation

w

x

v
y

h=a+b c=uh

already

computed

∂c

∂L

∂a ∂h ∂a ∂h

∂L
=
∂L ∂h

=
∂L

∂b ∂h ∂b ∂h

∂L
=
∂L ∂h

=
∂L

∂w ∂a ∂w ∂a

∂L
=
∂L ∂a

=
∂L

x

a=wx

∂v ∂b ∂v ∂b

b= vy

∂L
=
∂L ∂b

=
∂L

y

∂y ∂b ∂y ∂b

∂L
=
∂L ∂b

=
∂L

v

∂h ∂c ∂h ∂c

∂L
=
∂L ∂c

=
∂L

u

• Some of these partial derivatives are intermediate

• their values will not be used for gradient descent

direction of computation

∂x ∂a ∂x ∂a

∂L
=
∂L ∂a

=
∂L

w

Today

❑Deep learning hardware

❑Deep learning software

❑Tricks for training neural networks
❑Activation function

❑Data Preprocessing

❑Batch normalization

❑Transfer learning

Deep Learning Hardware

Inside a computer

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en

Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en

CPU vs GPU

Cores Clock

Speed

Memory Price Speed (throughput)

CPU

(Intel Core
i9-7900k)

10 4.3

GHz

System

RAM

$385 ~640 GFLOPS FP32

GPU

(NVIDIA
RTX 3090)

10496 1.6

GHz

24 GB

GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores,

but each core is
much faster and
much more

capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and

“dumber”; great for
parallel tasks

Example: Matrix Multiplication

A x B
B x C

A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

66x 67x 71x 64x 76x

CPU / GPU Communication

Model

is here
Data is here

CPU / GPU Communication

Model

is here
Data is here

If you aren’t careful, training can

bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD

- Use multiple CPU threads
to prefetch data

Deep Learning Software

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,

Hong Kong U, etc but main framework of

choice at AWS

And others...

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

We’ll focus on this

Deep Learning Framework

(1) Quick to develop and test new ideas

(2) Automatically compute gradients

(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS,
OpenCL, etc)

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy

Bad:

- Have to compute

our own gradients

- Can’t run on GPU

Good:

Clean API, easy to

write numeric code

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!

Lecture 6 - 40

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!

Computational Graphs

x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct

arrays on a different device!

PyTorch
(More details)

Pytorch fundamental concepts

❑torch.Tensor: Like a numpy array, but can run on GPU

❑torch.autograd: Package for building computational
graphs out of Tensors, and automatically computing
gradients

❑torch.nn.Module: A neural network layer; may store
state or learnable weights

Pytorch:Tensor

Running example: Train

a two-layer ReLU

network on random data

with L2 loss

Create random tensors

for data and weights

Pytorch:Tensor

Forward pass: compute

predictions and loss

Pytorch:Tensor

Backward pass:

manually compute

gradients

Pytorch:Tensor

Gradient descent

step on weights

Pytorch:Tensor

To run on GPU, just use a

different device!

Pytorch:Tensor

Creating Tensors with

requires_grad=True enables

autograd

Operations on Tensors with

requires_grad=True cause PyTorch

to build a computational graph

Pytorch:Autograd

Forward pass looks exactly

the same as before, but we

don’t need to track

intermediate values -

PyTorch keeps track of them
for us in the graph

Pytorch:Autograd

Compute gradient of loss

with respect to w1 and w2

Pytorch:Autograd

Make gradient step on weights, then zero

them. Torch.no_grad means “don’t build a

computational graph for this part”

Pytorch:Autograd

PyTorch methods that end in underscore

modify the Tensor in-place; methods that

don’t return a new Tensor

Pytorch:Autograd

PyTorch: nn

Higher-level wrapper for

working with neural nets

Use this! It will make your life
easier

Define our model as a

sequence of layers; each

layer is an object that

holds learnable weights

PyTorch: nn

Forward pass: feed data to

model, and compute loss

PyTorch: nn

Forward pass: feed data to

model, and compute loss

torch.nn.functional has useful

helpers like loss functions

PyTorch: nn

Backward pass: compute

gradient with respect to all

model weights (they have

requires_grad=True)

PyTorch: nn

Make gradient step on

each model parameter

(with gradients disabled)

PyTorch: nn

Use an optimizer for

different update rules

PyTorch: nn

After computing gradients, use

optimizer to update params

and zero gradients

PyTorch: nn

PyTorch: nn

Define new Modules

A PyTorch Module is a neural net

layer; it inputs and outputs Tensors

Modules can contain weights or other
modules

You can define your own Modules

using autograd!

PyTorch: nn

Define new Modules

Define our whole model

as a single Module

PyTorch: nn

Define new Modules

Initializer sets up two

children (Modules can

contain modules)

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision

https://github.com/pytorch/vision

https://github.com/pytorch/vision

PyTorch: torch.utils.tensorboard

This image is licensed under CC-BY 4.0; no changes were made to the image

A python wrapper around

Tensorflow’s web-based

visualization tool.

https://github.com/facebookresearch/visdom
https://creativecommons.org/licenses/by/4.0/

Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism:

split computation

graph into parts &

distribute to GPUs/

nodes

Data parallelism: split

minibatch into chunks &

distribute to GPUs/ nodes

Tricks for training neural networks

Where we are now...
Learning network parameters through optimization

Landscape image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Lecture 7 -

http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Where we are now...

Lecture 7 -

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph

(network), get loss

3. Backprop to calculate the gradients

4. Update the parameters using the gradient

Activation Functions

Lecture 7 -

Activation Functions

Lecture 7 -

Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Lecture 7 -

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they have nice interpretation as a

saturating “firing rate” of a neuron

Lecture 7 -

1. Saturated neurons “kill” the

gradients

Sigmoid

Lecture 7 -

1. Saturated neurons “kill” the

gradients

2. exp() is a bit expensive

Activation Functions

- Squashes numbers to range [0,1]

- Historically popular since they have nice interpretation as a

saturating “firing rate” of a neuron

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- still kills gradients when saturated :(

[LeCun et al., 1991]

Lecture 7 -

Activation Functions

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Lecture 7 -

ReLU

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Lecture 7 -

Activation Functions

Leaky ReLU

[Mass et al., 2013]

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Lecture 7 -

Activation Functions

Leaky ReLU

[Mass et al., 2013]

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha

(parameter)

Lecture 7 -

TLDR: In practice:

Lecture 7 -

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU

- To squeeze out some marginal gains

- Don’t use sigmoid or tanh

Data Preprocessing

Lecture 7 -

Data Preprocessing

(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

(Assume X [NxD] is data matrix, each example in a row)

Lecture 7 -

Data Preprocessing

Data Preprocessing

In practice, you may also see PCA and Whitening of the data

(data has diagonal

covariance matrix)

Lecture 7 -

(covariance matrix is the

identity matrix)

Fei-Fei Li & Ranjay Krishna & Danfei Xu Lecture 7 - April 20, 2021

Data Preprocessing

Before normalization: classification loss

very sensitive to changes in weight matrix;
hard to optimize

After normalization: less sensitive to small

changes in weights; easier to optimize

TLDR: In practice for Images: center only

Lecture 7 -

Divide by per-channel std (e.g. ResNet)

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image (e.g. AlexNet)

(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)

(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Not common

to do PCA or

whitening

Batch Normalization

Lecture 7 -

Batch Normalization

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make

each dimension zero-mean unit-variance, apply:

[Ioffe and Szegedy, 2015]

this is a vanilla

differentiable function...

Lecture 7 -

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

XN

D

Lecture 7 -

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and

shift parameters:

Output,

Shape is N x D

Learning = ,

= will recover the

identity function!

Lecture 7 -

Per-channel mean,
shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

Output,

Shape is N x D

Batch Normalization: Test-Time Estimates depend on minibatch;

can’t do this at test-time!

Lecture 7 -

Input:

Learnable scale and

shift parameters:

Learning = ,

= will recover the

identity function!

Input: Per-channel mean,

shape is D

Per-channel var,

shape is D

Normalized x,

Shape is N x D

Batch Normalization: Test-Time

Learnable scale and

shift parameters:

Output,

Shape is N x D

(Running) average of

values seen during training

(Running) average of

values seen during training

Lecture 7 -

During testing batchnorm

becomes a linear operator!

Can be fused with the previous

fully-connected or conv layer

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully

Connected or Convolutional layers,

and before nonlinearity.

Lecture 7 -

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Lecture 7 -

- Makes deep networks much easier to train!

- Improves gradient flow

- Allows higher learning rates, faster convergence

- Networks become more robust to initialization

- Acts as regularization during training

- Zero overhead at test-time: can be fused with conv!

- Behaves differently during training and testing: this

is a very common source of bugs!

Transfer learning

Transfer Learning with CNNs

Transfer Learning with CNNs

AlexNet:

64 x 3 x 11 x 11

Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize

this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for

Generic Visual Recognition”, ICML 2014

Finetuned fromAlexNet

Transfer Learning with CNNs

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-1000

FC-4096

FC-4096

1. Train on Imagenet

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

FC-C

FC-4096

FC-4096

2. Small Dataset (C classes)

Freeze these

Reinitialize

this and train

Image

MaxPool

Conv-64

Conv-64

MaxPool

Conv-128

Conv-128

MaxPool

Conv-256

Conv-256

MaxPool

Conv-512

Conv-512

Conv-512

Conv-512

MaxPool

FC-C

FC-4096

FC-4096

Donahue et al, “DeCAF: A Deep Convolutional Activation

Feature for Generic Visual Recognition”, ICML 2014

Razavian et al, “CNN Features Off-the-Shelf: An

Astounding Baseline for Recognition”, CVPR Workshops

2014

3. Bigger dataset

Freeze these

Lower learning rate
when finetuning;
1/10 of original LR

is good starting
point

Train these

With bigger

dataset, train
more layers

Summary

We looked in detail at:

Lecture 7 -

- Activation Functions (use ReLU)

- Data Preprocessing (images: subtract mean)

- Batch Normalization (use this!)

- Transfer learning (use this if you can!)

TLDRs

Optimization

Optimization is essential for DL

• Deep Learning is an instance of a recipe:

1. Specification of a dataset

2. A cost function

3. A model

4. An optimization procedure

today

Our focus is on one case of optimization

• Find parameters θ of a neural network that

significantly reduces a cost function J(θ)

– It typically includes:
• a performance measure evaluated on an entire training

set as well as an additional regularization term

Keras for MNIST Neural Network

• # Neural Network

• import keras

• from keras.datasets import mnist

• from keras.layers import Dense

• from keras.models import Sequential

• (x_train, y_train), (x_test, y_test) = mnist.load_data()

• num_classes=10

• image_vector_size=28*28

• x_train = x_train.reshape(x_train.shape[0], image_vector_size)

• x_test = x_test.reshape(x_test.shape[0], image_vector_size)

• y_train = keras.utils.to_categorical(y_train, num_classes)

• y_test = keras.utils.to_categorical(y_test, num_classes)

• image_size = 784 model = Sequential()

• model.add(Dense(units=32, activation='sigmoid', input_shape=(image_size,)))

• model.add(Dense(units=num_classes, activation='softmax'))

• model.compile(optimizer='sgd', loss='categorical_crossentropy',metrics=['accuracy'])

• history = model.fit(x_train, y_train, batch_size=128, epochs=10,verbose=False,validation_split=.1)

• loss,accuracy = model.evaluate(x_test, y_test, verbose=False)

Optimization methods

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

http://hduongtrong.github.io/2015/11/23/coordinate-descent/

Optimization Problem in DL

• Optimization is an extremely difficult task for DL

– Traditional ML: careful design of objective function
and constraints to ensure convex optimization

– When training neural networks, we must confront
nonconvex cases

Batch Gradient Methods

• Batch or deterministic gradient methods:

– Optimization methods that use all training samples
are batch or deterministic methods

• Somewhat confusing terminology

– Batch also used to describe minibatch used by
minibatch stochastic gradient descent

– Batch gradient descent implies use of full training set

– Batch size refers the size of a minibatch

Stochastic or Online Methods

• Those using a single sample are called

Stochastic or on-line

– On-line typically means continually created
samples drawn from a stream rather than

multiple passes over a fixed size training set

• Deep learning algorithms usually use more
than one but fewer than all samples

• Methods traditionally called minibatch or

minibatch stochastic now simply called

stochastic

Ex: (stochastic gradient descent - SGD)

Minibatch Size
• Driven by following:

– Larger batches→more accurate gradient

– If all examples processed in parallel, amount of
memory scales with batch size

• This is a limiting factor in batch size

– GPU architectures more efficient with sizes power of 2

• Range from 32 to 256, sometimes with 16 for large models

SGD and Generalization Error

• Minibatch SGD follows the gradient of the true

generalization error

– as long as the examples are repeated

• Implementations of minibatch SGD

– Shuffle once and pass through multiple number of times

J *()= E(x , y)~p
data

(L(f (x;), y))

SGD Follows Gradient Estimate Downhill

Algorithm: SGD update at training iteration k

A crucial parameter is the learning rate ε

At iteration k it is εk

Choice of Learning Rate

Too small learning rate

will take too long

Too large, the next point will
perpetually bounce haphazardly
across the bottom of the well

If gradient is small, then can safely try a

larger learning rate, which compensates
for the small gradient and results in a

larger step size

https://developers.google.com/machine-learning/crash-course/reducing-loss/learning-rate

Need for Decreasing Learning Rate

• True gradient of total cost function

– Becomes small and then 0

• One can use a fixed learning rate

• But SGD has a source of noise

– Random sampling of m training samples

• Gradient does not vanish even when arriving at a minimum

– Common to decay learning rate linearly
until iteration τ: εk=(1-α)ε0+αετ with α=k/τ

– After iteration τ, it is common to leave ε constant

• Often a small positive value in the range 0.0 to 1.0

Learning Rate Decay

• Decay learning rate

τ: εk=(1-α)ε0+αετ with α=k/τ

• Learning rate is calculated at each update

– (e.g. end of each mini-batch) as follows:

• Where lrate is learning rate for current epoch

• initial_lrate is specified as an argument to SGD

• decay is the decay rate which is greater than zero and

• iteration is the current update number

Momentum Method

• SGD is a popular optimization strategy but it

can be slow

• Momentum method accelerates learning, when:

– Facing high curvature

– Noisy gradients

• It works by accumulating the moving average

of past gradients and moves in that direction

while exponentially decaying

Gradient Descent with Momentum

• Now can set a higher learning rate

• Gradient descent with momentum converges

faster than standard gradient descent

• Taking large steps in w2 direction and small

steps in w1 direction slows down algorithm

w2

w1

• Momentum reduces oscillation in w2 direction

https://www.andreaperlato.com/aipost/gradient-descent-with-momentum/

Momentum Definition

• Introduce velocity variable v

• This is the direction and speed at which

parameters move through parameter space

• Name momentum comes from physics & is mass

times velocity

• The momentum algorithm assumes unit mass

• A hyperparameter α ε [0,1) determines
exponential decay of v

Momentum Update Rule

• The update rule is given by

• The velocity v accumulates the gradient

elements

• The larger α is relative to ε, the more

previous gradients affect the current direction

• The SGD algorithm with momentum is next

Momentum

Gradient Step

Momentum Step

Actual Step

SGD Algorithm with Momentum

Algorithm: SGD with momentum

Keras: The learning rate can be specified via the lr argument and

the momentum can be specified via the momentum argument.

Momentum
• SGD with momentum

Contour lines depict a quadratic loss function

with a poorly conditioned Hessian matrix.
Red path cutting across the contours depicts
path followed by momentum learning rule as
it minimizes this function

• Comparison to SGD without momentum
At each step we show path that would

be taken by SGD at that step

Poorly conditioned quadratic objective
Looks like a long narrow valley
with steep sides

Wastes time

Importance of Learning Rate

• Learning rate is the most difficult hyperparameter

to set

• It significantly affects model performance

• Cost is highly sensitive to some directions in

parameter space and insensitive to others

– Momentum helps but introduces another
hyperparameter

– Other approach

• If direction of sensitivity is axis aligned, have a separate

learning rate for each parameter and adjust them

throughput learning

Motivation

Nice (all features are equally important)

Motivation

Harder

AdaGrad
• Individually adapts learning rates of all parameters

– Scale them inversely proportional to the sum of the
historical squared values of the gradient

• The AdaGrad Algorithm:

Performs well for some but not all deep learning

Performance with CNN

Convolutional neural networks training cost.

(left) Training cost for the first three epochs.
(right) Training cost over 45 epochs.
CIFAR-10 with c64-c64-c128-1000 architecture.

	Slide 1
	Slide 2
	Slide 3: Depicting shallow neural networks
	Slide 4: With enough hidden units
	Slide 5: Example of Multi Layer Perceptron (MLP)
	Slide 6: Cross-Entropy Loss (related to logistic regression loss)
	Slide 7: (general multi-class case) Cross-Entropy Loss
	Slide 8: From last lecture: Gradient Descent
	Slide 9
	Slide 10: Today
	Slide 11
	Slide 12: Inside a computer
	Slide 13: Spot the CPU! (central processing unit)
	Slide 14: Spot the GPUs! (graphics processing unit)
	Slide 15: CPU vs GPU
	Slide 16: Example: Matrix Multiplication
	Slide 17: CPU vs GPU in practice
	Slide 18
	Slide 19: CPU / GPU Communication
	Slide 20: CPU / GPU Communication
	Slide 21
	Slide 22: A zoo of frameworks!
	Slide 23: A zoo of frameworks!
	Slide 24: Deep Learning Framework
	Slide 25: Computational Graphs
	Slide 26: Computational Graphs
	Slide 27: Computational Graphs
	Slide 28: Computational Graphs
	Slide 29: Computational Graphs
	Slide 30: Computational Graphs
	Slide 31: PyTorch (More details)
	Slide 32: Pytorch fundamental concepts
	Slide 33: Pytorch:Tensor
	Slide 34
	Slide 35: Pytorch:Tensor
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Pytorch:Autograd
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: PyTorch: nn
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: PyTorch: nn Define new Modules
	Slide 53: PyTorch: nn Define new Modules
	Slide 54: PyTorch: nn Define new Modules
	Slide 55
	Slide 56
	Slide 57: Model Parallel vs. Data Parallel
	Slide 58
	Slide 59: Where we are now... Learning network parameters through optimization
	Slide 60: Mini-batch SGD
	Slide 61: Activation Functions
	Slide 62: Activation Functions
	Slide 63: Activation Functions
	Slide 64: Activation Functions
	Slide 72
	Slide 73: Activation Functions
	Slide 74
	Slide 75
	Slide 76: Activation Functions
	Slide 77: Activation Functions
	Slide 78: TLDR: In practice:
	Slide 79: Data Preprocessing
	Slide 80: Data Preprocessing
	Slide 82: Data Preprocessing
	Slide 83: Data Preprocessing
	Slide 84: Data Preprocessing
	Slide 85: TLDR: In practice for Images: center only
	Slide 86: Batch Normalization
	Slide 87: Batch Normalization
	Slide 88: Batch Normalization
	Slide 89: Batch Normalization
	Slide 90: Batch Normalization: Test-Time
	Slide 91: Batch Normalization: Test-Time
	Slide 92: Batch Normalization
	Slide 93: Batch Normalization
	Slide 94: Transfer learning
	Slide 95: Transfer Learning with CNNs
	Slide 96: Transfer Learning with CNNs
	Slide 97: Transfer Learning with CNNs
	Slide 98: Transfer Learning with CNNs
	Slide 99: Transfer Learning with CNNs
	Slide 100: Transfer Learning with CNNs
	Slide 101: Transfer Learning with CNNs
	Slide 102: Summary We looked in detail at:
	Slide 103
	Slide 104: Optimization is essential for DL
	Slide 105: Our focus is on one case of optimization
	Slide 106: Keras for MNIST Neural Network
	Slide 107: Optimization methods
	Slide 108: Optimization Problem in DL
	Slide 109: Batch Gradient Methods
	Slide 110: Stochastic or Online Methods
	Slide 111: Minibatch Size
	Slide 112: SGD and Generalization Error
	Slide 113: SGD Follows Gradient Estimate Downhill
	Slide 114: Choice of Learning Rate
	Slide 115: Need for Decreasing Learning Rate
	Slide 116: Learning Rate Decay
	Slide 117: Momentum Method
	Slide 118: Gradient Descent with Momentum
	Slide 119: Momentum Definition
	Slide 120: Momentum Update Rule
	Slide 121: Momentum
	Slide 122: SGD Algorithm with Momentum
	Slide 123: Momentum
	Slide 124: Importance of Learning Rate
	Slide 125: Motivation
	Slide 126: Motivation
	Slide 127: AdaGrad
	Slide 128: Performance with CNN

