
CSE 176 Introduction to Machine Learning
Lecture 13: RNN and Transformer

From last lecture: Convolutional Layer

Local connectivity

Weight sharing

Handling multiple input/output channels

Transforms 3D tensor into 3D tensor

filters = #output (activation) maps # input channels

Local connectivity

Weight sharing

filter size,

stride

From last lecture: CNN e.g. VGG -16

neurohive.io/en/popular-networks/vgg16/

picture credits

https://neurohive.io/en/popular-networks/vgg16/

Recap: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla – TPAMI 2017

decoder

(upsampling part)
encoder

decoder upsamples encoder-generated features
important:

encoder convolutional layers are

typically pre-trained on image net

Note: this result is equivalent to Bilinear Interpolation

0.25 0.5 0.25

0.5 1 0.5

0.25 0.5 0.25

0 0 0.25 0.5 0.75 1 1.25 1.5 0.75

0 0 0.5 1 1.5 2 2.5 3 1.5

1 2 2.5 3 3.5 4 4.5 5 2.5

2 4 4.5 5 5.5 6 6.5 7 3.5

3 6 6.5 7 7.5 8 8.5 9 4.5

4 8 8.5 9 9.5 10 10.5 11 5.5

5 10 10.5 11 11.5 12 12.5 13 6.5

6 12 12.5 13 13.5 14 14.5 15 7.5

3 6 6.25 6.5 6.75 7 7.25 7.5 3.75

Input Image

Kernel

Output Image

kernel=3x3

stride=2
padding=1

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Bilinear Interpolation is a special case of deconvolution.

Deconvolution: Example

Skip connections: concatenation

M

H
 x

 H

N M+N

feature map

“skipped”

from encoder

feature map

“upsampled”

insider decoder

H
 x

 H

feature vector dimensions
feature maps

concatenation

U-net: expanding decoder with symmetry

and many skip connections

Let’s use neural networks for

natural language processing!

Part I: NLP and Language Modelling

ChatGPT (Generative Pretrained Transformer)

What is Natural Language Processing?

❑Natural language processing is the set of methods for
making human language accessible to computers.
(Jacob Eisenstein)

❑Natural language processing is the field at the intersection
of Computer science (Artificial intelligence) and linguistics.
(Christopher Manning)

NLP application: Machine translation

http://education.news.cn/2020-08/25/c_1210768533.htm

http://education.news.cn/2020-08/25/c_1210768533.htm

NLP application: Dialog systems, chatbots, assistants

NLP application: Sentiment analysis

❑Determine the meaning behind is positive, negative, or
neutral

English Vocabulary

How large is the vocabulary of English (or

any other language)?
Vocabulary size = the number of distinct word types

If you count words in text, you will find that…
…a few words are very frequent

(the, be, to, of, and, a, in, that,…)

… most words are very rare.

… even if you’ve read a lot of text,

you will keep finding words you haven’t seen before.

Word frequency: the number of occurrences of a word type in a text

(or in a collection of texts)

Long-tailed word distribution

1

10

100

1000

10000

100000

1 100000

F
re

q
u

e
n

c
y
 (

lo
g

)

Number of words (log)

W
o

rd
fr

e
q

u
e

n
c
y

(l
o

g
-s

c
a

le
) A few words

are very frequent

10 100 1000 10000

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words

are very rare

Why do we need language models?

Many NLP tasks require natural language output:
—Machine translation: return text in the target language

—Speech recognition: return a transcript of what was spoken

—Natural language generation: return natural language text

—Spell-checking: return corrected spelling of input

Language models define probability distributions

over (natural language) strings or sentences.

➔We can use a language model to generate strings

➔We can use a language model to score/rank candidate strings

so that we can choose the best (i.e. most likely) one:

if PLM(A) > PLM(B), return A, not B

Hmmm, but…

… what does it mean for a language model
to “define a probability distribution”?

… why would we want to define probability
distributions over languages?

… how can we construct a language model such that
it actually defines a probability distribution?

You should be able to answer these questions
after this lecture

Key concepts

N-gram language models
Independence assumptions

Getting from n-grams to a distribution over a language

Relative frequency (maximum likelihood) estimation

Smoothing

Text as a bag of words
Alice was beginning to get very tired of

sitting by her sister on the bank, and of

having nothing to do: once or twice she

had peeped into the book her sister was

reading, but it had no pictures or

conversations in it, 'and what is the use

of a book,' thought Alice 'without

pictures or conversation?'

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

Now let’s look at natural language

P(of) = 3/66

P(Alice) = 2/66

P(was) = 2/66

P(to) = 2/66

P(her) = 2/66

P(sister) = 2/66

P(,) = 4/66

P(') = 4/66

Sampling with replacement
• A sampled sequence of words

• beginning by, very Alice but was

and? reading no tired of to into

sitting sister the, bank, and thought

of without her nothing: having

conversations Alice once do or on she

it get the book her had peeped was

conversation it pictures or sister

in, 'what is the use had twice of a

book''pictures or' to

In this model, P(English sentence) = P(word salad)

A language model over a vocabulary V

assigns probabilities to strings drawn from V*.

How do we compute the probability of a string

w(1) . . .w(i) ?

Recall the chain rule:

P(w(1) . . .w(i)) = P(w(1)) ⋅ P(w(2)| w(1)) ⋅ . . . ⋅ P(w(i)| w(i−1), . . . ,w(1))

An n-gram language model assumes each word w(i)

depends only on the last n−1 words w(i−1), . . . , w(i−(n+1))

Pngram(w(1) . . .w(i)) = P(w(1)) ⋅ P(w(2)| w(1)) ⋅ . . . ⋅ P(w(i)| w(i−1), . . . ,w(i−(n+1)))

Language modeling with N-grams

N-gram models

N-gram models assume each word (event)

depends only on the previous n−1 words (events):
N

Unigram model: P(w(1) . . .w(N)) = ∏ P(w(i))
i=1

N

Bigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1))
i=1

N

Trigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1),w(i−2))
i=1

Independence assumptions where the n-th event in a sequence depends

only on the last n-1 events are called Markov assumptions (of order n−1).

How many parameters do n-gram models have?

Given a vocabulary V of |V| word types:

Unigram model:

Bigram model:

Trigram model:

so, for |V| = 104:

104 parameters

1012 parameters

108 parameters

|V| parameters

|V|2 parameters

|V|3 parameters

(one distribution P(w(i)) with |V| outcomes

[each w  V is one outcome])

• Alice was beginning to get very

tired of sitting by her sister on the

bank, and of having nothing to do:

once or twice she had peeped into the

book her sister was reading, but it

had no pictures or conversations in

it, 'and what is the use of a book,'

thought Alice 'without pictures or

conversation?'

P(w(i) = of | w(i–1) = tired) = 1

P(w(i) = of | w(i–1) = use) = 1

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3

P(w(i) = book | w(i–1) = the) = 1/3

P(w(i) = use | w(i–1) = the) = 1/3

A bigram model for Alice

English
Alice was beginning to get very

tired of sitting by her sister on

the bank, and of having nothing to

do: once or twice she had peeped

into the book her sister was

reading, but it had no pictures or

conversations in it, 'and what is

the use of a book,' thought Alice

'without pictures or conversation?'

Word Salad
beginning by, very Alice but was and?

reading no tired of to into sitting

sister the, bank, and thought of without

her nothing: having conversations Alice

once do or on she it get the book her had

peeped was conversation it pictures or

sister in, 'what is the use had twice of

a book''pictures or' to

Now, P(English) ⪢P(word salad)

Using a bigram model for Alice

P(w(i) = of | w(i–1) = tired) = 1

P(w(i) = of | w(i–1) = use) = 1

P(w(i) = sister | w(i–1) = her) = 1

P(w(i) = beginning | w(i–1) = was) = 1/2

P(w(i) = reading | w(i–1) = was) = 1/2

P(w(i) = bank | w(i–1) = the) = 1/3

P(w(i) = book | w(i–1) = the) = 1/3

P(w(i) = use | w(i–1) = the) = 1/3

From n-gram probabilities to language models with EOS

Think of a language model as a stochastic process:

— At each time step, randomly pick one more word.

— Stop generating more words when the word you pick

is a special end-of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our

training data so that each sentence ends in EOS.
This means our vocabulary is now VEOS = V {EOS}

We then get an actual language model,

i.e. a distribution over strings of any length
Technically, this is only true because P(EOS | …) will be high enough that we are always

guaranteed to stop after having generated a finite number of words
A leaky or inconsistent language model would have P(L) < 1. That could happen if EOS had a
very small probability (but doesn’t really happen in practice).

Learning (estimating) a language model

Where do we get the parameters of our model

(its actual probabilities) from?

P(w(i) = ‘the’ | w(i–1) = ‘on’) = ???

We need (a large amount of) text as training data

to estimate the parameters of a language model.

The most basic parameter estimation technique:

relative frequency estimation (frequency = counts)

P(w(i) = ‘the’ | w(i–1) = ‘on’) = C(‘on the’) / C(‘on’)

Also called Maximum Likelihood Estimation (MLE)

C(‘on the’) [or f(‘on the’) for frequency]:

How often does ‘on the’ appear in the training data?

NB: C(‘on’) = ∑wVC(‘on’ w)

How do we use language models?

Independently of any application, we could use

a language model as a random sentence generator
(we sample sentences according to their language model probability)

We can use a language model as a sentence ranker.
We prefer output sentences SOut that have a higher language model

probability. We can use a language model P(SOut) to score and rank

these different candidate output sentences, e.g. as follows:

argmaxSOut P(SOut | Input) = argmaxSOut P(Input | SOut)P(SOut)

Generating from a distribution

How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X |Y=y)?

-Assume X has N possible outcomes (values): {x1, …, xN}

and P(X=xi | Y=y) = pi

-Divide the interval [0,1] into N smaller intervals according to

the probabilities of the outcomes
-Generate a random number r between 0 and 1.

-Return the x1 whose interval the number is in.

x1 x2 x3 x4 x5

0 p1+p2p1 p1+p2+p3 p1+p2+p3+p4 1

r

Generating the Wall Street Journal

Generating Shakespeare

What have we covered so far?

We have covered a broad overview of some basic

techniques in NLP:

— N-gram language models

Let’s create a (much better) neural language

model!

Our first neural net for NLP:

A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model

predicts the probability of the n-th word

following the preceding n–1 words:

P(w(i)| w(i−1),w(i−2),…,wi−(n−1))

How can we model this with a neural net?

— Input layer: concatenate n–1 word vectors

— Output layer: a softmax over |V| units

An n-gram model P(w | w1…wk)

as a feedforward net (naively)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS)

We want to condition each word on k preceding words

Our (naive) model:

— [Naive]

Each input word wi  V is a V-dimensional one-hot vector v(w)

→ The input layer x = [v(w1),…,v(wk)] has V×k elements

— We assume one hidden layer h

— The output layer is a softmax over V elements

P(w | w1…wk) = softmax(hW2 + b2)

An n-gram model P(w | w1…wk)

as a feedforward net (better)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS)

We want to condition each word on k preceding words

Our (better) model:

— [Better]

Each input word wi  V is an n-dimensional dense embedding

vector v(w) (with n≪V)

→ The input layer x = [v(w1),…,v(wk)] has n×k elements

— We assume one hidden layer h

— The output layer is a softmax over V elements

P(w | w1…wk) = softmax(hW2 + b2)

Our neural n-gram models

Architecture:
Input Layer:

Hidden Layer:

Output Layer:

x = [v(w1)….v(wk)]

h = g(xW1 + b1)

P(w | w1…wk) = softmax(hW2 + b2)

How many parameters do we need? [# of weights and biases]:

Hidden layer with one-hot inputs: W1  R(k·V) × dim(h)

Hidden layer with dense inputs: W1  R(k·n) ×dim(h)

b1  Rdim(h)

b1  Rdim(h)

W2  Rdim(h)×VOutput layer (any inputs): b2  RV

With V = 10K, n = 300 (word2vec), dim(h) = 300

k = 2 (trigram): W1 ∈R20,000×300 or W1 ∈R600×300 and b1∈R300

k = 5 (six-gram): W1 ∈R50,000×300 or W1 ∈R1500×300 and b1∈R300

W2 ∈R300×10,000 b2 ∈R10,000

Six-gram model with one-hot inputs: 27,000,460,000 parameters,

with dense inputs: 3,460,000 parameters

Traditional six-gram model: 104x6 = 1024 parameters

1D CNNs for text

Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

— Filter size n = 2, stride = 2, no padding:

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

What we have learned last time

❑Language Modeling

❑N-gram is a simple language model

❑Neural N-gram Language Model

❑Feedforward network and CNN for NLP

Recap: Language models

Many NLP tasks require natural language output:
 —Machine translation

—Speech recognition

—Natural language generation

—Spell-checking

Language models define probability distributions

over (natural language) strings or sentences.

➔We can use a language model to generate strings

➔We can use a language model to score/rank candidate strings

so that we can choose the best (i.e. most likely) one:

if PLM(A) > PLM(B), return A, not B

A language model over a vocabulary V

assigns probabilities to strings drawn from V*.

How do we compute the probability of a string

w(1) . . .w(i) ?

Recall the chain rule:

P(w(1) . . .w(i)) = P(w(1)) ⋅ P(w(2)| w(1)) ⋅ . . . ⋅ P(w(i)| w(i−1), . . . ,w(1))

An n-gram language model assumes each word w(i)

depends only on the last n−1 words w(i−1), . . . , w(i−(n+1))

Pngram(w(1) . . .w(i)) = P(w(1)) ⋅ P(w(2)| w(1)) ⋅ . . . ⋅ P(w(i)| w(i−1), . . . ,w(i−(n+1)))

Recap: Language modeling with N-grams

Recap: N-gram models

N-gram models assume each word (event)

depends only on the previous n−1 words (events):
N

Unigram model: P(w(1) . . .w(N)) = ∏ P(w(i))
i=1

N

Bigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1))
i=1

N

Trigram model: P(w(1) . . .w(N)) = ∏ P(w(i)| w(i−1),w(i−2))
i=1

Independence assumptions where the n-th event in a sequence depends

only on the last n-1 events are called Markov assumptions (of order n−1).

1D CNNs for text

Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

— Filter size n = 2, stride = 2, no padding:

The q u i ck brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

The q u i c k brown f o x jumps o v e r t h e l a z y dog

The q u i c k brown f o x j um p s o v e r t h e l a z y dog

Example question

What’s wrong with MLP or CNN for NLP?

Recurrent Neural Network

❑Temporal nature in language processing

❑RNN deals with sequential input data stream like language.

A simple RNN

A Simple Recurrent Neural Network

❑RNN illustrated as a feed-forward network

ht = g(Uht−1 +Wxt)
yt = f (Vht)

A Simple Recurrent Neural Network

❑RNN unrolled in time

ht = g(Uht−1 +Wxt)
yt = f (Vht)

How to optimize Recurrent Neural Network?

❑Backpropagation through time

ht = g(Uht−1 +Wxt)
yt = f (Vht)

RNNs as Language Models

❑Language models predict the next word in a sequence given
some preceding context.

P(fish|Thanks for all the)

❑RNN Language Model

ht = g(Uht−1 +Wxt)
yt = softmax(Vht)

Training an RNN Language Model

❑Maximum likelihood estimation

Generation with RNN Language Model

❑Autoregressive (casual) generation

RNNs for other NLP tasks

❑RNN for sequence classification

❑Commonly called text classification, like sentiment analysis
or spam detection

Vanishing/exploding gradients

❑Consider the gradient of Lt at step t, with respect to the
hidden state hk at some previous step k (k<t):

❑Recurrent multiplication

❑Gradients too small (vanishing gradient) or too large
(exploding gradient)

Exploding gradients

❑What is the problem?

❑We take a very large step in SGD

❑Solution: Gradient clipping

Vanishing gradients

❑What is the problem?

❑Parameters barely get updated (no learning)

❑Solution:
❑LSTMs: Long short-term memory networks

Local vs distant information

❑Hidden states tend to contain local information

❑But distant information is critical

“The flights the airline was canceling were full”

❑Should predict “were” given distant information (flights)

Long Short-term Memory (LSTM)

❑A type of RNN proposed by Hochreiter and Schmidhuber in
1997 as a solution to the vanishing gradients problem

❑Basic idea: turning multiplication into addition

❑Use “gates” to control how much information to add/erase

❑At each timestep, there is a hidden

 state ht (local information) and also a

 cell state Ct (distant information)

Long Short-term Memory (LSTM)

❑Gate: feedforward layer, followed by a sigmoid activation
function, followed by a pointwise multiplication with the
layer being gated

❑For example, output gate (What to output for hidden state)

❑Other gates
❑Forget gate

❑Add gate

❑Input gate

Long Short-term Memory (LSTM)

Summary: Common RNN NLP architectures

Encoder Decoder Architecture

❑Arbitrary length output given an input sequence

❑A.K.A. sequence-to-sequence network

❑Context vector conveys the essence of the input to the
decoder

Encoder Decoder Architecture

❑Training an encoder-decoder for machine translation

Problem of Encoder-decoder architecture

❑Context vector encodes EVERYTHING about input sequence

❑Context vector acts as a bottleneck

Attention Mechanism

❑Each output in decoder accesses all the hidden states from
the encoder, not just the last state

❑Each output attends to all input

Transformer: The intuition

❑Context matters for natural language understanding

❑For example:
❑The chicken crossed the road because it wanted to get to the other

side

❑I walked along the pond, and noticed that one of the trees along
the bank had fallen into the water after the storm.

Attention weights between words

❑Example: English to French translation

❑Input: “The agreement on the

European Economic Area was

signed in August 1992.”

❑Output: “L’accord sur la zone

 économique européenne

a été signé en août 1992.”

Casual or backward-looking self-attention

❑Attends to all the inputs up to, and including, the current
one

Self-attention

❑Version 1:

Query, Key, and Value

❑Query: the current focus of attention when being compared
to all of the other preceding inputs.

❑Key: a preceding input being compared to the current focus

❑Value: used to compute the output for the current focus

❑Version 2:

Self-attention

❑Final Version

Attention Operation

Multi-head attention

Multi-head attention

Self attention v.s. Cross attention

❑Self Attention
❑Key, Value, and Query from the same set of tokens

❑Cross Attention
❑Key, and Value from one set of tokens

❑Query from another set of tokens

❑E.g. words in one language pay attention to words in another.

From Attention to Transformer Block

❑A transformer block has
❑Self Attention: information exchange between tokens

❑Feed forward network: Information transform within tokens

❑E.g. a multi-layer perceptron with 1 hidden layer

❑Normalization (Layer normalization)

❑Residual connection

Embedding for token and position

Language Model Head

Transformer-based Large Language Model

Vision Transformer (ViT) vsResNets

BiT = ResNet152x4

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Justin Johnson

ResNet-152x4

B = Base

L = Large
H= Huge

/32, /16, /14 is patch
size; smaller patch

size is a bigger model
(more patches)

Vision Transformer (ViT) vsResNets

BiT = ResNet152x4

Recall: ImageNet

dataset has 1k

categories, 1.2M

images

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Justin Johnson

When trained on

ImageNet, ViT

models perform

worse than ResNets

ResNets

B = Base

L = Large
H= Huge

/32, /16, /14 is patch
size; smaller patch

size is a bigger model
(more patches)

Vision Transformer (ViT) vsResNets

ImageNet-21k has

14M images with 21k

categories

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Justin Johnson

If you pretrain on

ImageNet-21k and

fine-tune on

ImageNet, ViT does

better: big ViTs match
big ResNets

ResNets

B = Base

L = Large
H= Huge

/32, /16, /14 is patch
size; smaller patch

size is a bigger model
(more patches)

Vision Transformer (ViT) vsResNets

ResNets

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Justin Johnson

JFT-300M is an

internal Google

dataset with 300M

labeled images

If you pretrain on

JFTand finetune on

ImageNet, large

ViTs outperform

large ResNets

B = Base

L = Large
H= Huge

/32, /16, /14 is patch
size; smaller patch

size is a bigger model
(more patches)

Vision Transformer (ViT) vsResNets

ResNets

JFT-300M is an

internal Google

dataset with 300M

labeled images

If you pretrain on

JFTand finetune on

ImageNet, large

ViTs outperform

large ResNets

ViT:2.5k TPU-v3 core

days of training

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Justin Johnson

ResNet: 9.9k TPU-v3

core days of training

ViTs make more

efficient use of GPU
/ TPUhardware
(matrix multiply is

more hardware-
friendly than conv)

	Slide 1
	Slide 2: From last lecture: Convolutional Layer
	Slide 3: From last lecture: CNN e.g. VGG -16
	Slide 4: Recap: Encoder/Decoder
	Slide 5: Note: this result is equivalent to Bilinear Interpolation
	Slide 6
	Slide 7: U-net: expanding decoder with symmetry
	Slide 8: Let’s use neural networks for natural language processing!
	Slide 9
	Slide 10: ChatGPT
	Slide 11: What is Natural Language Processing?
	Slide 12: NLP application: Machine translation
	Slide 13: NLP application: Dialog systems, chatbots, assistants
	Slide 14: NLP application: Sentiment analysis
	Slide 15: English Vocabulary
	Slide 16: Long-tailed word distribution
	Slide 17: Why do we need language models?
	Slide 18: Hmmm, but…
	Slide 19: Key concepts
	Slide 20: Now let’s look at natural language
	Slide 21: Sampling with replacement
	Slide 22: Language modeling with N-grams
	Slide 23: N-gram models
	Slide 24: How many parameters do n-gram models have?
	Slide 25: A bigram model for Alice
	Slide 26: Using a bigram model for Alice
	Slide 27: From n-gram probabilities to language models with EOS
	Slide 28: Learning (estimating) a language model
	Slide 29: How do we use language models?
	Slide 30: Generating from a distribution
	Slide 31: Generating the Wall Street Journal
	Slide 32: Generating Shakespeare
	Slide 33: What have we covered so far?
	Slide 34: Our first neural net for NLP: A neural n-gram model
	Slide 35: An n-gram model P(w | w1…wk) as a feedforward net (naively)
	Slide 36: An n-gram model P(w | w1…wk) as a feedforward net (better)
	Slide 37: Our neural n-gram models
	Slide 38: 1D CNNs for text
	Slide 39: What we have learned last time
	Slide 40: Recap: Language models
	Slide 41: Recap: Language modeling with N-grams
	Slide 42: Recap: N-gram models
	Slide 43: 1D CNNs for text
	Slide 44: Example question
	Slide 45: What’s wrong with MLP or CNN for NLP?
	Slide 46: Recurrent Neural Network
	Slide 47: A Simple Recurrent Neural Network
	Slide 48: A Simple Recurrent Neural Network
	Slide 49: How to optimize Recurrent Neural Network?
	Slide 50: RNNs as Language Models
	Slide 51: Training an RNN Language Model
	Slide 52: Generation with RNN Language Model
	Slide 53: RNNs for other NLP tasks
	Slide 54: Vanishing/exploding gradients
	Slide 55: Exploding gradients
	Slide 56: Vanishing gradients
	Slide 57: Local vs distant information
	Slide 58: Long Short-term Memory (LSTM)
	Slide 59: Long Short-term Memory (LSTM)
	Slide 60: Long Short-term Memory (LSTM)
	Slide 61: Summary: Common RNN NLP architectures
	Slide 62: Encoder Decoder Architecture
	Slide 63: Encoder Decoder Architecture
	Slide 64: Problem of Encoder-decoder architecture
	Slide 65: Attention Mechanism
	Slide 66: Transformer: The intuition
	Slide 67: Attention weights between words
	Slide 68: Casual or backward-looking self-attention
	Slide 69: Self-attention
	Slide 70: Query, Key, and Value
	Slide 71: Self-attention
	Slide 72: Attention Operation
	Slide 73: Multi-head attention
	Slide 74: Multi-head attention
	Slide 75: Self attention v.s. Cross attention
	Slide 76: From Attention to Transformer Block
	Slide 77: Embedding for token and position
	Slide 78: Language Model Head
	Slide 79: Transformer-based Large Language Model
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Vision Transformer (ViT) vs ResNets
	Slide 85: Vision Transformer (ViT) vs ResNets
	Slide 86: Vision Transformer (ViT) vs ResNets
	Slide 87: Vision Transformer (ViT) vs ResNets
	Slide 88: Vision Transformer (ViT) vs ResNets

