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From last lecture: Convolutional Layer

Local connectivity
Weight sharing

Handling multiple input/output channels
Transforms 3D tensor into 3D tensor
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From last lecture: CNN e.g. VGG -16
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https://neurohive.io/en/popular-networks/vgg16/

Recap: Encoder/Decoder

Segnet: A deep convolutional encoder-decoder architecture for image segmentation

Badrinarayanan, Kendall, Cipolla— TPAMI 2017

| Convolutional Encoder-Decoder

RGB Image I conv + Batch [Ndrmalisation + RelLU
I Pooling I Upsampling Softmax
encoder / \ decoder /
important: (upsampling part) ’\

Output

Segmentation

encoder convolutional layers are decoder upsamples encoder-generated features

typically pre-trained on image net




Deconvolution: Example

Note: this result is equivalent to Bilinear Interpolation
Output Image

Input Image

Kernel

025 | 05 | 025

0.5 1 0.5

kernel=3x3
stride=2
padding=1 8

025 | 05 | 0.25

Bilinear Interpolation is a special case of deconvolution.




Skip connections: concatenation

feature map feature map
“skipped” “upsampled”
from encoder insider decoder
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feature vector dimensions
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U-net: expanding decoder with symmetry

and many skip connections
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Let’s use neural networks for
natural language processing!
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ChatGPT (Generative Pretrained Transformer)

@ You

What are top 10 things to do in Merced?

ChatGPT

Merced, California, offers a range of activities and attractions for visitors to enjoy. Here are the top

10 things to do in Merced:

1. Merced National Wildlife Refuge: Explore the refuge and observe diverse bird species, including
migratory birds, waterfowl, and endangered species like the Aleutian Canada goose.

2. Castle Air Museum: Discover the history of aviation at this museum, which features a vast
collection of aircraft, including military planes, helicopters, and memorabilia.

3. Yosemite National Park: While not directly in Merced, the park is nearby and offers breathtaking
scenery, hiking trails, waterfalls, and opportunities for camping and wildlife viewing.

4. Applegate Park and Zoo: Enjoy a day outdoors at this park, which features playgrounds, pichic
areas, a small zoo with animals like monkeys, birds, and reptiles, and a miniature train ride.

5. Downtown Merced: Explore the historic downtown area with its charming shops, cafes,
restaurants, and galleries. Don't miss the Merced County Courthouse Museum to learn about the
region's history.

6. Merced County Fairgrounds: Check out events and festivals held at the fairgrounds throughout
the year, including the Merced County Fair, concerts, rodeos, and more.

7. Lake Yosemite: Spend a relaxing day by the lake, where you can enjoy fishing, boating, kayaking,

picnicking, and walking along the scenic trails.




What is Natural Language Processing?

(dNatural language processing is the set of methods for
making human language accessible to computers.
(Jacob Eisenstein)

(Natural language processing is the field at the intersection
of Computer science (Artificial intelligence) and linguistics.
(Christopher Manning)




NLP application: Machine translation
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2020-08-25 08:06:03  Kf: HILMRIR

T05MWAME (KB) BAT“BBEER": XTER, hESBEBRBEINZLTE
It g, BE, SKEX, BEHWRRERINS.

BT BiE LNTE, BERHLNRK.

RELFILBERFRMLS, HAMBEMMENT=ETHR: “KARN, KAZK
FiplgR. "

XERETE), MABENESIBERX, KE, BOE, ME-BEFRE, KBTI
TEARERMEHDAENRZ.

http://education.news.cn/2020-08/25/c_1210768533.htm
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Grandpa feels sorry for his granddaughter and let the baby
sleep in

2020-08-25 08:06:03  Source: Qianjiang Evening News

Uncle Zhong (a pseudonym), 70, fell into "summer anxiety": This summer, he
would shuttle his granddaughter to and from training classes every week. With
high temperatures and scorching heat, every day | come back, | feel as weak as

stepping on cotton.
In addition to physical discomfort, there is also mental tension.

Feeling that his son and daughter-in-law were reporting too much for their
children, Uncle Zhong also had a conflict with them: "It's a hot day, adults and

children suffer."

During this period of time, Uncle Zhong came to the Mental Health
Department of Zhejiang Provincial People's Hospital because he was prone to get

angry, insomnia, poor appetite, and unstable blood pressure.



http://education.news.cn/2020-08/25/c_1210768533.htm

NLP application: Dialog systems, chatbots, assistants

Welcome!
All | New  Off:

Workspaces

Ideas & Inspiration
How to

Series

New Workspaces products
Products

Desks & tables
Office chairs

Cable management &
accessories

Workspace storage

Paper & media organizers

Bins & bags
Lighting I
- Go
Shop Online
fose

M0 O http//19...a-us.cgi

Welcome to IKEA. I'm Anna,
IKEA USA's Automated Online
Assistant. You can ask me
about IKEA and our products
and our services. How can T
help you today?

9:41AM

Some things you
can ask me:

What's my ETA?
When is sunrise in Paris”
Wake me up in 8 hours
Call my brother at work

Call Brian

Examples

"Explain quantum computing in
simple terms" —

“Got any creative ideas for a 10
year old’s birthday?" —

"How do | make an HTTP request
in Javascript?” —

ChatGPT

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-up
corrections

Trained to decline inappropriate
requests

Tips to help you
figure out what

to say

The first interest
in your list. Scroll
up to see more.

A

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of world and
events after 2021

Cortana’s
Notebook

Listen for what
song is playing

Link to more tips
and suggestions

Type a question,
command, or
search for
Cortana to do...

..or tap the
microphone to
start talking

ask me anything

HMRALEETREE, K5 IAHBRIE



NLP application: Sentiment analysis

(A Determine the meaning behind is positive, negative, or
neutral

e o
-
My experience The product is Your support
so far has been okay | guess. team is
fantastic! useless.

POSITIVE NEUTRAL NEGATIVE




English Vocabulary

How large is the vocabulary of English (or
any other language)?
Vocabulary size = the number of distinct word types

If you count words in text, you will find that...
...a few words are very frequent
(the, be, to, of, and, a, in, that,...)
... most words are very rare.
... even if you've read a lot of text,
you will keep finding words you haven'’t seen before.

Word frequency: the number of occurrences of a word type in a text
(or in a collection of texts)

N,




Long-tailed word distribution

100000

A few words
are very frequent

10000

1000 |

Most words
gl N are very rare

10 |

Word frequency (log-scale)

1

1 100000

10 100 1000 10000

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, ...., Ws346 = COMputer, ...




Why do we need language models?

Many NLP tasks require natural language output:
—Machine translation: return text in the target language
—Speech recognition: return a transcript of what was spoken
—Natural language generation: return natural language text
—Spell-checking: return corrected spelling of input

Language models define probability distributions
over (natural language) strings or sentences.

- We can use a language model to generate strings
= We can use a language model to score/rank candidate strings
so that we can choose the best (i.e. most likely) one:
If PLm(A) > Pum(B), return A, not B




Hmmm, but...

... what does it mean for a language model
to “define a probability distribution™?

... why would we want to define probability
distributions over languages?

... how can we construct a language model such that
It actually defines a probability distribution?

You should be able to answer these gquestions
after this lecture



Key concepts

N-gram language models

Independence assumptions
Getting from n-grams to a distribution over a language

Relative frequency (maximum likelihood) estimation
Smoothing




Now Iet S Iook at natural Ianguage

Tex‘r as a bag of words

was beginning to get very tired of ¢
sitting by her on the bank, of }
having nothing to do: once or twice she
had peeped into the book her was
reading, but it had no pictures or
conversations in it, ' what is the use
of a book,' thought 'without
pictures or conversation?'

4

e o

P(of) = 3/66 P(to) = 2/66 P(,) = 4/66
P( ) = 2/66 P(her) = 2/66 P(') = 4/66
P(was) = 2/66 P( ) = 2/66




Samplmg with replacement

T A samplec sequence ‘of words

* beginning by, very but was

? reading no tired of to into i
sitting the, bank, thought 3
¥ of without her nothing: having
¥ conversations once do or on she
] it get the book her had peeped was
conversation it pictures or
in, 'what is the use had twice of a

P(of) = 3/66 P(to) = 2/66 P(,) = 4/66
P( ) = 2/66 P(her) = 2/66 P(') = 4/66
P(was) = 2/66 P( ) = 2/66

In this model, P(English sentence) = P(word salad)



Language modeling with N-grams

A language model over a vocabulary V
assigns probabilities to strings drawn from V*.

How do we compute the probability of a string
w w2

Recall the chain rule:
Pw .. .wi)= P(wt). P(w]w). ... Pwwi-1  wil)

An n-gram language model assumes each word w()

depends only on the last n=1 words w1, ..., wli=(n+1))
Pogram(W2 ... wD) = P(wd). P(w@|wd)). .. pwd|wli-1),  wli-(+1)

,,,,,



N-gram models

N-gram models assume each word (event)

depends only on the previous n§1 words (events):

Unigram model: P(w() ., wiN)) = M P(w)
i=1
N - -
Bigram model: P(w(1) ... w(N)) = M P(w] wli—1))
i=1
N - - -
Trigram model: P(w(1) .. .w(N)) = M P(wh]w(i=1) wli=2))
i=1
Independence assumptions where the n-th event in a sequence depends
only on the last n-1 events are called Markov assumptions (of order n—1).




How many parameters do n-gram models have?

Given a vocabulary V of |V| word types: so, for [V| = 104:

Unigram model: |V| parameters 104 parameters

(one distribution P( w® ) with |V| outcomes
[each w € V is one outcome))

Bigram model: |V|2 parameters 108 parameters

Trigram model: |V|3 parameters 1012 parameters

N,




A bigram model for Alice

* Alice was beginning to get very
tired of sitting by her sister on the
bank, of having nothing to do:
once or twice she had peeped into the
book her sister was reading, but it
had no pictures or conversations in

it, ! what is the use of a book,'
thought Alice 'without pictures or
conversation?'
PWM)=of |wWi1=tired)=1 P(w() = bank | w(-1) = the) = 1/3
Pwih=of |wil)=use) =1 P(w@® = book | wi-1) = the) = 1/3
Pwi=sister|wi)=her)= 1 P(w(@)=use | w(i-1) = the) = 1/3

P(w() = beginning | wi-l) = was) = 1/2
P(w() = reading | wi-1) = was) = 1/2

N,




Using a bigram model for Alice

English Word Salad

Alice was beginning to get very

s . -
tired of sitting by her sister on beglnglng by,.very Allce.but was o
the bank of having nothing to reading no tired of to into sitting

! sister the, bank, thought of without

do: once or twice she had peeped
into the book her sister was
reading, but it had no pictures or
conversations in it, ' what is
the use of a book,' thought Alice
'without pictures or conversation?'

Now, P(English) > P(word salad) I

PWO) = of |WiD=tired)=1 P(w@ = bank | wi-)= the) = 1/3
Pwih=of |wil)=use) =1 P(w@® = book | wi-1) = the) = 1/3
Pwi=sister|wi)=her)= 1 P(w(@)=use | w(i-1) = the) = 1/3
P(w() = beginning | wi-l) = was) = 1/2
P(w() = reading | wi-1) = was) = 1/2

her nothing: having conversations Alice
once do or on she it get the book her had
peeped was conversation it pictures or
sister in, 'what is the use had twice of
a book' 'pictures or' to




From n-gram probabilities to language models with EOS

Think of a language model as a stochastic process:

— At each time step, randomly pick one more word.
— Stop generating more words when the word you pick
Is a special end-of-sentence (EOS) token.

To be able to pick the EOS token, we have to modify our

training data so that each sentence ends in EOS.
This means our vocabulary is now VEOS =V U {EOS}

We then get an actual language model,
l.e. a distribution over strings of any length

Technically, this is only true because P(EOS | ...) will be high enough that we are always

guaranteed to stop after having generated a finite number of words
A leaky or inconsistent language model would have P(L) < 1. That could happen if EOS had a
very small probability (but doesn’t really happen in practice).




Learning (estimating) a language model

Where do we get the parameters of our model
(its actual probabilities) from?

P(wi) = ‘the’| wi-1) = ‘on’) = ?7?7?
We need (a large amount of) text as training data
to estimate the parameters of a language model.

The most basic parameter estimation technique:

relative frequency estimation (frequency = counts)
P(wih = ‘the’| wi-1) = ‘on’) = C(‘on the’) | C(‘on’)

Also called Maximum Likelihood Estimation (MLE)

C(‘on the’) [or f(‘on the’) for frequency]:
How often does ‘on the’ appear in the training data?
NB: C(‘on’) = YwevC(‘on’Ww)

N,



How do we use language models?

Independently of any application, we could use
a language model as a random sentence generator
(we sample sentences according to their language model probability)

We can use a language model as a sentence ranker.
We prefer output sentences Sout that have a higher language model
probability. We can use a language model P(Sout) to score and rank
these different candidate output sentences, e.g. as follows:

argmaxsout P(Sout | Input) = argmaxsout P(Input | Sout)P(Sout)




Generating from a distribution

How do you generate text from an n-gram model?

That is, how do you sample from a distribution P(X [Y=y)?

-Assume X has N possible outcomes (values): {xu, ..., Xn}
and P(X=xi| Y=y) = pi

-Divide the interval [0,1] into N smaller intervals according to
the probabilities of the outcomes

-Generate a random number r between 0 and 1.

-Return the xa whose interval the number is in.




Generating the Wall Street Journal

unigram: Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U. S. E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions

N,




Generating Shakespeare

Unigram

e To him swallowed confess hear both. Which. Of save on trail for are ay device
and rote life have

e Every enter now severally so, let

¢ Hill he late speaks; or! a more to leg less first you enter

e Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near;
vile like

Bigram

e What means, sir. I confess she? then all sorts, he 1s trim, captain.

eWhy dost stand forth thy canopy, forsooth; he 1s this palpable hit the King Henry.
Live king. Follow.

eWhat we, hath got so she that I rest and sent to scold and nature bankrupt, nor the
first gentleman?

eEnter Menenius, 1if it so many good direction found’st thou art a strong upon com-
mand of fear not a liberal largess given away, Falstaff! Exeunt

Trigram

e Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

e This shall forbid it should be branded, if renown made it empty.

e Indeed the duke; and had a very good friend.

e Fly, and will rid me these news of price. Therefore the sadness of parting, as they
say, ‘tis done.

Quadrigram

e King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the
watch. A great banquet serv’d in;

e Will you not tell me who I am?

e It cannot be but so.

e Indeed the short and the long. Marry, 'tis a noble Lepidus.




What have we covered so far?

We have covered a broad overview of some basic
techniqgues in NLP:

— N-gram language models

Let's create a (much better) neural language
model!




Our first neural net for NLP:

A neural n-gram model

Given a fixed-size vocabulary V, an n-gram model
predicts the probability of the n-th word
following the preceding n—1 words:

P(wO|wli=1) wii=2) | wi=(n-1))
How can we model this with a neural net?
— Input layer: concatenate n—1 word vectors

— Output layer: a softmax over |V| units




An n-gram model P(W | w1...wk)
as a feedforward net (naively)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (naive) model:

— [Naive]
Each input word wi € Vis a V-dimensional one-hot vector v(w)
— Theinput layer x = [v(wi),...,v(wk)] has Vxk elements

— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wk) = softmax(hW?2 + b2?)




An n-gram model P(W | w1...wk)
as a feedforward net (better)

Assumptions:

The vocabulary V contains V types (incl. UNK, BOS, EOS)
We want to condition each word on k preceding words

Our (better) model:

— [Better]
Each input word wi € Vis an n-dimensional dense embedding
vector v(w) (with n«kV)
— The input layer x = [v(w1),...,v(wk)] has nxk elements

— We assume one hidden layer h

— The output layer is a softmax over V elements
P(w | wi...wk) = softmax(hW?2 + b2?)




Our neural n-gram models

-

.
Architecture:
Input Layer: X = [v(wi)....v(wk)]
Hidden Layer: h = g(xW! + bt)
Output Layer: P(w | wi...wk) = softmax(hW2 + b?) )
R

\

[ How many parameters do we need? [# of weights and biases].

Hidden layer with one-hot inputs: W1 € R(kV)x<dmh) bl e Rdimh)
Hidden layer with dense inputs: W?! e R(kn) xdim() bl e Rdimh)
Output layer (any inputs): W2 e Rdmh)xv b2 e RV

With V = 10K, n = 300 (word2vec), dim(h) = 300
k = 2 (trigram): W1 € R20,000x300 gr W1 € R600x300 gnd bie R300
k =5 (six-gram): W1 € R50,000x300 or W1 € R1500%300 gnd b1 R300
W2 € R300x10,000 h2 € R10,000
Six-gram model with one-hot inputs: 27,000,460,000 parameters,
with dense inputs: 3,460,000 parameters
Traditional six-gram model: 104x6 = 1024 parameters




1D CNNs for text

Textis a (variable-length) sequence of words (word vectors)
[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:
— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog




What we have learned last time

dLanguage Modeling

(N-gram is a simple language model
(ANeural N-gram Language Model
JFeedforward network and CNN for NLP




Recap: Language models

Many NLP tasks require natural language output:

—Machine translation
—Speech recognition
—Natural language generation
—Spell-checking

Language models define probability distributions

over (natural language) strings or sentences.

- We can use a language model to generate strings
= We can use a language model to score/rank candidate strings

so that we can choose the best (i.e. most likely) one:
If PLm(A) > Pum(B), return A, not B




Recap: Language modeling with N-grams

A language model over a vocabulary V
assigns probabilities to strings drawn from V*.

How do we compute the probability of a string
w w2

Recall the chain rule:
Pw .. .wi)= P(wt). P(w]w). ... Pwwi-1  wil)

An n-gram language model assumes each word w()

depends only on the last n=1 words w1, ..., wli=(n+1))
Pogram(W2 ... wD) = P(wd). P(w@|wd)). .. pwd|wli-1),  wli-(+1)

,,,,,



Recap: N-gram models

N-gram models assume each word (event)

depends only on the previous n§1 words (events):

Unigram model: P(w() ., wiN)) = M P(w)
i=1
N - -
Bigram model: P(w(1) ... w(N)) = M P(w] wli—1))
i=1
N - - -
Trigram model: P(w(1) .. .w(N)) = M P(wh]w(i=1) wli=2))
i=1
Independence assumptions where the n-th event in a sequence depends
only on the last n-1 events are called Markov assumptions (of order n—1).




1D CNNs for text

Textis a (variable-length) sequence of words (word vectors)
[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:
— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog




Example question

1. (1 point) Calculate the probability of the sentence i want to eat lunch, given the proba-
bilities for a bi-gram language model in Fig. |1} Assume P(i|<s>)=0.19 with start-symbol
<s> and P(</s>|lunch)= 0.40 with end-symbol </s>.

i want to eat chinese food lunch spend

i 0.002 033 0 0.0036 0 0 0 0.00079
want 0.0022 0O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0O 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch  0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 1: Bigram probabilities for eight words learned from a corpus. Zero probabilities are in gray.
The rows are previous words and the columns are next words.




What’s wrong with MLP or CNN for NLP?



Recurrent Neural Network

dTemporal nature in language processing

(RNN deals with sequential input data stream like language.

o YN
—/ /

A simple RNN




A Simple Recurrent Neural Network

(JRNN illustrated as a feed-forward network

h, = g(Uh,_; +Wx, ) ( )
y: =f(Vh,) \ v /
C )




A Simple Recurrent Neural Network

(JRNN unrolled in time

h, = g(Uh,_; +Wx, ) w
y: =f(Vh,)




How to optimize Recurrent Neural Network?

C Y3 )

C ¥ ) (h )
h, = g(Uh_, +Wx, ) %
Ch ) C X4 )

(dBackpropagation through time

0Ly _ OL; ohy 0L ohy ohy  OLs oh; ohy oh,
OW  0h; OW  oh; oh, OW  oh; oh, oh, oW

1 & oL oh; | oh,
___Zzzah,[nah 1]aw

=1 k=1




RNNs as Language Models

dLanguage models predict the next word in a sequence given
some preceding context.

P(fish | Thanks for all the)
JRNN Language Model

2) b)

(hey o by ) ht g(Uh,_; +Wx, )

(o) = softmax(Vh, )
/w—\ / \

R CDED

N,



Training an RNN Language Model

dMaximum likelihood estimation

Next word long and thanks for all

A Y
Loss |— ].Og1 ylongl l— .I.Og yand| |— log Ythanks | |— I.Og Yfor | — lo all .u — Z Lck
A A
y

ommeoer (1) () () G Cl) )

Vocabulary vh

RNN > > > >
\ \ ~ J

g © [%] @ @ [% @

So long and thanks for




Generation with RNN Language Model

JAutoregressive (casual) generation

—_ —_— —_
~

long

-~

Sampled Word So

Softmax

Embedding

Input Word <S>



RNNs for other NLP tasks

(JRNN for sequence classification

(JCommonly called text classification, like sentiment analysis
or spam detection

( Softmax )

N\
y
(




Vanishing/exploding gradients

(dConsider the gradient of L, at step t, with respect to the
hidden state h, at some previous step k (k<t ):

(
oL 40T o
o~ on, | 11 on,

(JRecurrent multiplication

dGradients too small (vanishing gradient) or too large
(exploding gradient)




Exploding gradients

dWhat is the problem?
JWe take a very large step in SGD
dSolution: Gradient clipping

Algorithm 1 Pseudo-code for norm clipping
& < 55
if ||g|| > threshold then

~ , threshold »
& "el 8

end if




Vanishing gradients

dWhat is the problem?

(JParameters barely get updated (no learning)

dSolution:
LSTMs: Long short-term memory networks




Local vs distant information

(JHidden states tend to contain local information
(JBut distant information is critical
IH

“The flights the airline was canceling were ful
dShould predict “were” given distant information (flights)




Long Short-term Memory (LSTM)

A type of RNN proposed by Hochreiter and Schmidhuber in
1997 as a solution to the vanishing gradients problem

Basic idea: turning multiplication into addition

JUse “gates” to control how much information to add/erase
JAt each timestep, there is a hidden
state h, (local information) and also a

cell state C, (distant information)



Long Short-term Memory (LSTM)

dGate: feedforward layer, followed by a sigmoid activation
function, followed by a pointwise multiplication with the
layer being gated

JFor example, output gate (What to output for hidden state)

0 — G(Ught_1+ngt)
hg = 0t®tanh(ct)

JOther gates

Forget gate
JAdd gate
Qinput gate




Long Short-term Memory (LSTM)




Summary: Common RNN NLP architectures
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Encoder Decoder Architecture

JArbitrary length output given an input sequence
JA.K.A. sequence-to-sequence network

dContext vector conveys the essence of the input to the

decoder
Y Yo Ym

Context




Encoder Decoder Architecture

dTraining an encoder-decoder for machine translation

Decoder
A
i N
Id
Ilego erJa verde </s> Anewers
Total loss is the average
mmwmiiiiiw
target word: loss
() () () softmax
Y
hidden
layer(s)
embedding
layer
xlf X5 X3 X,
the green witch arrived <S> llegd la bruja verde
N— _/
-
Encoder

N,



Problem of Encoder-decoder architecture

(dContext vector encodes EVERYTHING about input sequence

(JContext vector acts as a bottleneck

bottleneck D

Lk

Encoder

ecoder

Lk

-




Attention Mechanism

(JEach output in decoder accesses all the hidden states from
the encoder, not just the last state

JEach output attends to all input

Decoder

attention

weights
Ofij

hidden
layer(s)

Encoder




Transformer: The intuition

dContext matters for natural language understanding

JFor example:

The chicken crossed the road because it wanted to get to the other
side

I walked along the pond, and noticed that one of the trees along
the bank had fallen into the water after the storm.




Attention weights between words

JExample: English to French translation

dinput: “The agreement on th

. A
European Economic Area was @9 L258wc B =
_ . . FERS6EDb0<czmn eSS .V
signed in August 1992. LB

accord

dOutput: “l’'accord sur la zone sur

, . , la
économique européenne one
a été signé en ao(it 1992 e
europeenne
a

été

signé

en

ao(t

1992

<end>



Casual or backward-looking self-attention

JAttends to all the inputs up to, and including, the current
one

L

Self-Attention [ |:

Layer




Self-attention

dVersion 1:

score(X;,X;) = X;-X;j

o;; = softmax(score(x;,x;)) Vj<i
Xiy Xj . .
_ 'exp(score( i) vi<i
> 1 exp(score(x;,Xg))

a;, = E oz,;jxj

J<i




Query, Key, and Value

dQuery: the current focus of attention when being compared
to all of the other preceding inputs.

dKey: a preceding input being compared to the current focus
dValue: used to compute the output for the current focus

q; = xW9; k; = x;WK; v; = x;W"

dVersion 2:
score(X;,X;) = q;-k;

J
a — Za;jvj

J<i




Self-attention

Final Version

q = xWk, = x;W v, =xwWY
qi - k;

Jdr

o7¥ softmax(score(x;,x;)) Vj<i

a;, = E Q;jV;

j<i

score(X;,X;) =




Attention Operation

QK"

Attention(Q, K, V') = softmax(
Vdj;

1%




Multi-head attention

Scaled Dot-Product Attention Multi-Head Attention
¢
f Linear
MatMul 1
4 4 Concat
SOftMaX A“f
} [
Mask (opt.) Scaled Dot-Product h
4 Attention
Scale
)
MatMul Linear Linear Linear
t 1
Q K V




Multi-head attention

N x d] ( )

4 )

Project from 0
th tod w [hdV x d]

Concatenate head1 output val | head2 output val | head3 output val | head4 output val
Outputs INxd,] [N xd,] INxd,] INxd,]
[N x hdv] A

( we, wk, wY,  Head4 ]

Multihead wQ, Wi, wV, Head 3 |
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Self attention v.s. Cross attention

(dSelf Attention
dKey, Value, and Query from the same set of tokens

Cross Attention
Key, and Value from one set of tokens

dQuery from another set of tokens
LE.g. words in one language pay attention to words in another.




From Attention to Transformer Block

A transformer block has
Self Attention: information exchange between tokens
Feed forward network: Information transform within tokens
U E.g. a multi-layer perceptron with 1 hidden layer
(dNormalization (Layer normalization)
JResidual connection

® T ®)
S S \
:f Transformer ( Layer Normalize ]

: Block
Residual Feodforward
connection |§§ + E]
1

I
I
I
I
|
I
: [ Layer Normalize ]
I
I
I
I
I
\

Residual
connection

CER )




Embedding for token and position

( Transformer Block )

X = Composite
Embeddings
(word + position)

Word
Embeddings

Position
Embeddings

Janet will back the bill




Language Model Head

A 1Y Word probabilities 1 x |V

(| ' '
Language Model Head l (ol ) ’ Softmax over vocabulary V
L
takes h™y and outputs a Logits 1V
distribution over vocabulary V ,
wbeddl.rng Unembedding layer d x|V
layer = E
. : J
Chy ) (b ) |
LayerL ,—— K B b -
Transformer !




Transformer-based Large Language Model

Completion Text
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AN IMAGE 1S WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy*'f, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlshy*
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(TmageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to trainEl
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Model Layers Hiddensize ) MLP size Heads Params

ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.




Vision Transformer (ViT) vs ResNets
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Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
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Vision Transformer (ViT) vs ResNets
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Vision Transformer (ViT) vs ResNets

size is a bigger model
(more patches)
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Vision Transformer (ViT) vs ResNets
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Vision Transformer (ViT) vs ResNets

JFT-300M is an
internal Google
dataset with 300M
labeled images

If you pretrain on
JFT and finetune on
ImageNet, large
ViTs outperform
large ResNets
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Pre-training dataset

Dosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

VIT: 2.5k TPU~/3 core
days of training

ResNet 9.9k TPUv3
core days of training

ViTs make more
efficient use of GPU
/ TPU hardware
(matrix multiply is
more hardware-
friendly than conv)
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