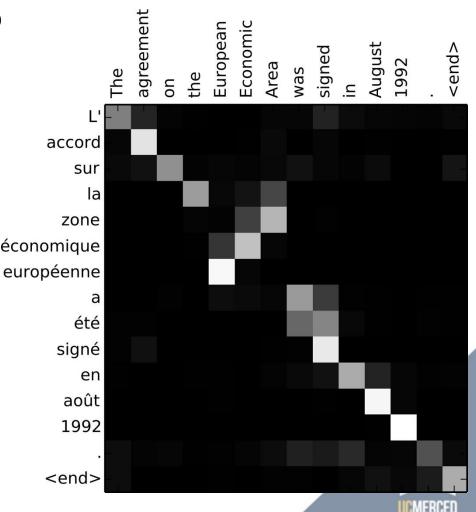


CSE 176 Introduction to Machine Learning Lecture 14: Decision Tree

Some materials from Stuart Russell and Miguel Carreira-Perpiñán

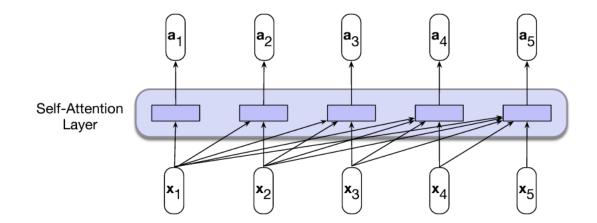
Recap: Attention between words

Example: English to French translation
 Input: "The agreement on the European Economic Area was signed in August 1992."
 Output: "L'accord sur la zone économique européenne a été signé en août 1992."



Recap: Casual or backward-looking self-attention

Attends to all the inputs up to, and including, the current one



Recap: Self-attention

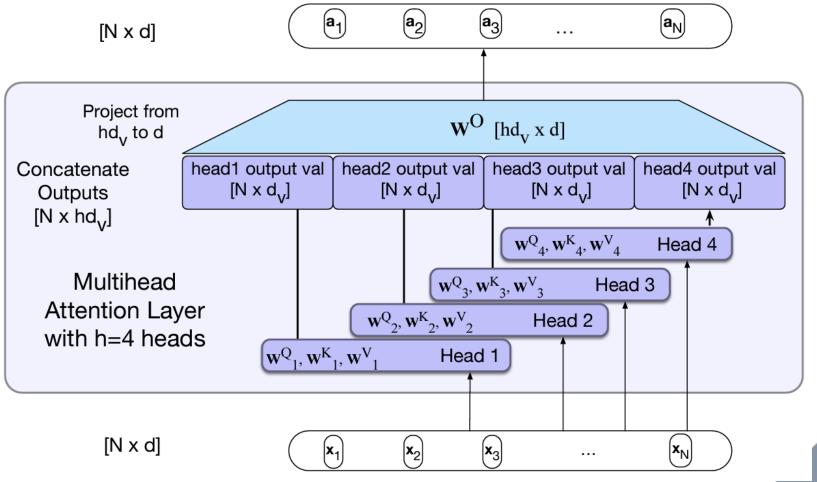
$$\mathbf{q}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{Q}}; \mathbf{k}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{K}}; \mathbf{v}_{i} = \mathbf{x}_{i} \mathbf{W}^{\mathbf{V}}$$

$$\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\mathbf{q}_{i} \cdot \mathbf{k}_{j}}{\sqrt{d_{k}}}$$

$$\alpha_{ij} = \operatorname{softmax}(\operatorname{score}(\mathbf{x}_{i}, \mathbf{x}_{j})) \quad \forall j \leq i$$

$$\mathbf{a}_{i} = \sum_{j \leq i} \alpha_{ij} \mathbf{v}_{j}$$

Recap: Multi-head attention



Self attention v.s. Cross attention

□Self Attention

Given the same set of tokens

Cross Attention

□Key, and Value from one set of tokens

□Query from another set of tokens

□E.g. words in one language pay attention to words in another.

From Attention to Transformer Block

A transformer block has

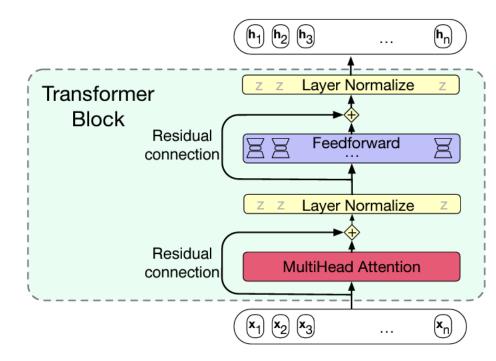
Self Attention: information exchange between tokens

Feed forward network: Information transform within tokens

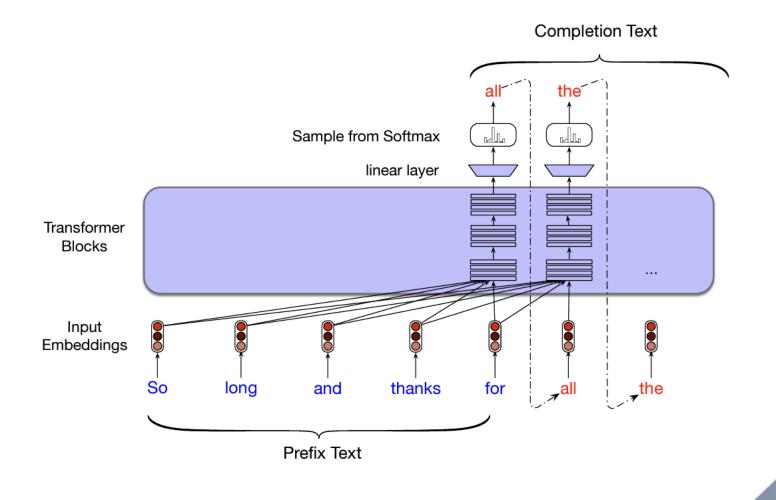
E.g. a multi-layer perceptron with 1 hidden layer

Normalization (Layer normalization)

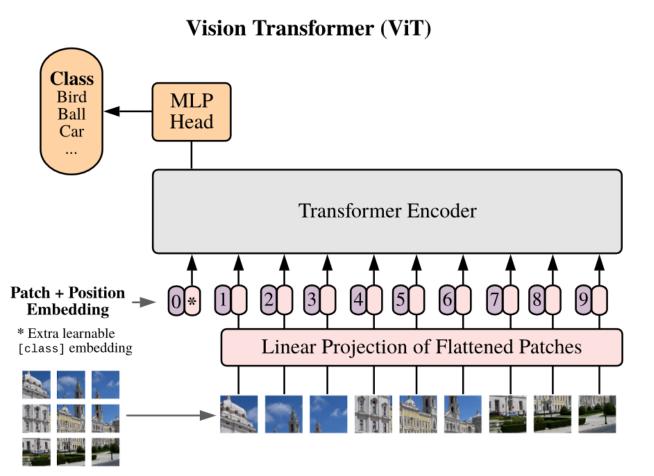
Residual connection

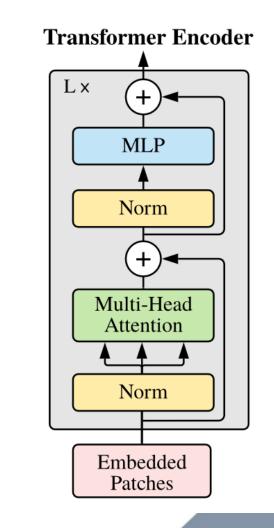


Recap: Transformer-based Large Language Model



Recap: Vision Transformer





Decision Tree

Recap: The XOR problem

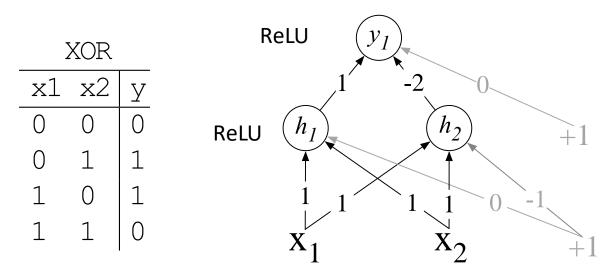
Minsky and Papert (1969)

□Can perceptron compute simple functions of input?

	AND			OR		XOR			
x1	x2	У	x1	x2	У	x1	x2	У	
0	0	0	0	0	0	0	0	0	
0	1	0	0	1	1	0	1	1	
1	0	0	1	0	1	1	0	1	
1	1	1	1	1	1	1	1	0	

Recap: Solution to the XOR problem

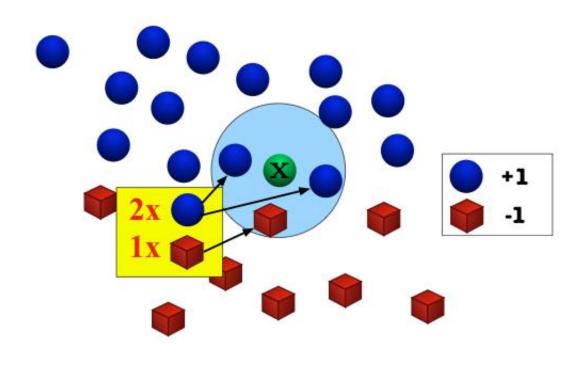
XOR can't be calculated by a single perceptron
XOR can be calculated by a layered network of units.



Recap: K nearest neighbor algorithm

□Nearest neighbor often instable (noise)

□ For a test input *x*, assign the most common label amongst its k most similar training inputs

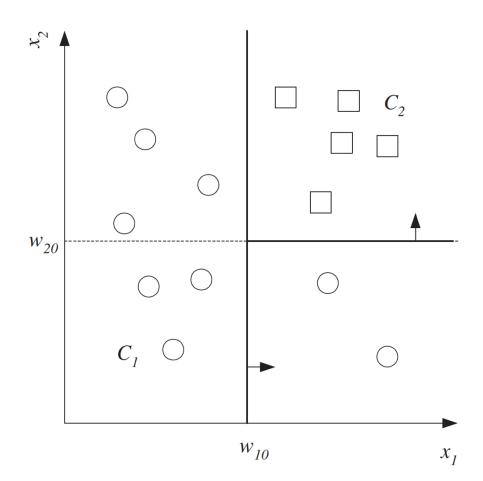


Decision Tree

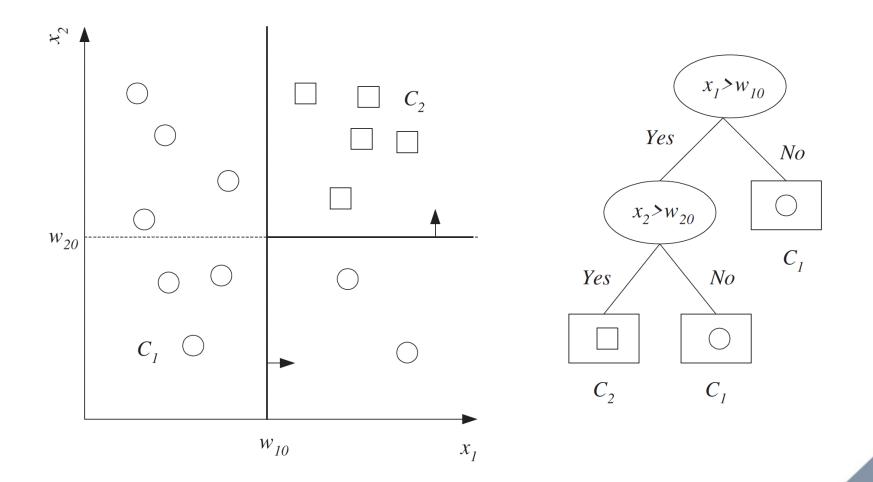
□Unlike neural network, decision tree is interpretable

- Unlike KNN algorithm, decision tree doesn't store training data
- □Can be used for both classification and regression
- □Select feature automatically
- Efficient at test-time

Binary Classification

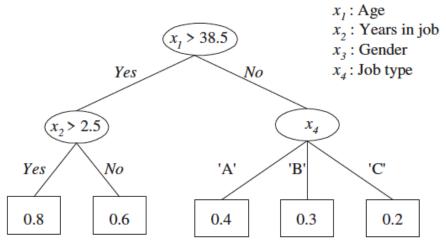


An example of Decision Tree



Rule extraction from decision tree

A regression tree:



□ R1: IF (age > 38.5) AND (years-in-job > 2.5) THEN y = 0.8 □ R2: IF (age > 38.5) AND (years-in-job ≤ 2.5) THEN y = 0.6 □ R3: IF (age ≤ 38.5) AND (job-type = 'A') THEN y = 0.4 □ R4: IF (age ≤ 38.5) AND (job-type = 'B') THEN y = 0.3 □ R5: IF (age ≤ 38.5) AND (job-type = 'C') THEN y = 0.2

Training Decision Tree

Restaurant Example

Develop decision tree that customers make when deciding whether to wait for a table or leave

Two classes: wait, leave

Ten attributes:

Alternative available?

Bar in restaurant?

□Is it Friday?

□Are we hungry?

□How full is restaurant?

How expensive?

□Is it raining?

Do we have reservation?

□What type of restaurant is it?

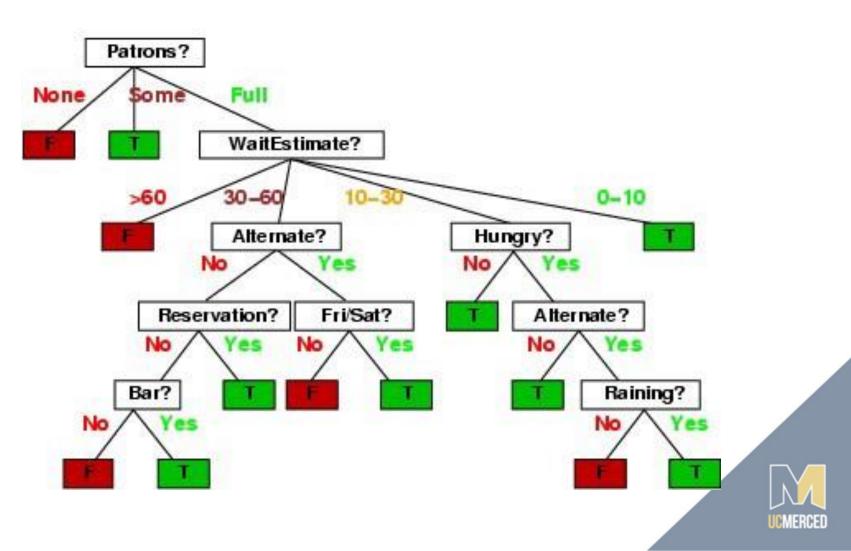
Estimated waiting time?

Training data

Example	Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	T	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Decision Tree

How to decide whether to wait?



Discrete and continuous input

Simplest case: discrete inputs with small ranges (e.g., Boolean)

 \Rightarrow one branch for each value; attribute is "used up" ("complete split")

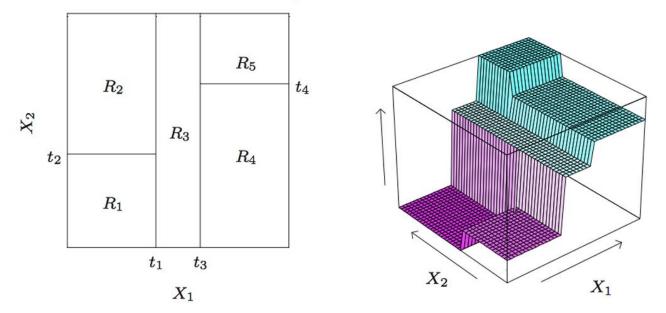
Discrete and continuous input

Simplest case: discrete inputs with small ranges (e.g., Boolean)

 \Rightarrow one branch for each value; attribute is "used up" ("complete split")

For continuous attribute, test is $X_j > c$ for some split point c

 \Rightarrow two branches, attribute may be split further in each subtree



Also split large discrete ranges into two or more subsets

ID3 / C4.5 / J48 Algorithm

Greedy algorithm developed by Ross Quinlan in 1987

Top-down construction by recursively selecting best attribute to use at current node

Once attribute selected for current node, generate child nodes

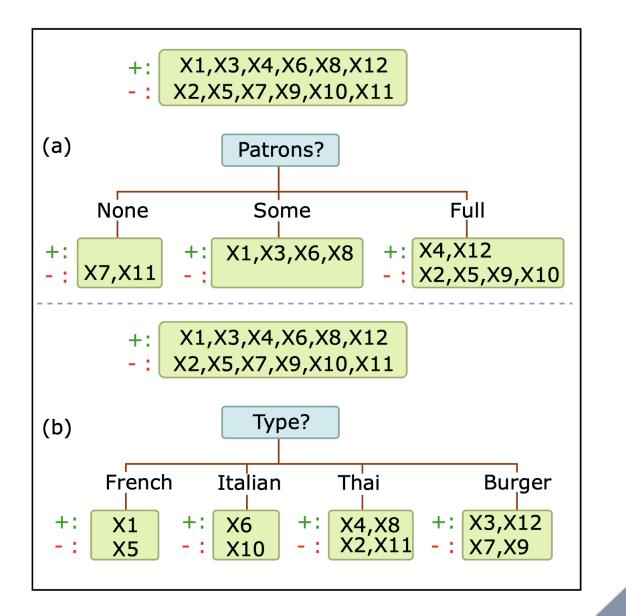
- Partition examples using values of attribute
- Repeat for each child node until examples associated with a node are all positive or negative

Which feature/attribute to split first?

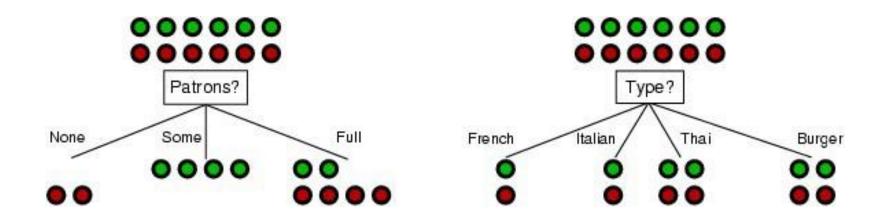
□ Probably Patron and Type

Example	Attributes										
Linumpio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	T	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	T	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	T	T	Full	\$	F	F	Burger	30–60	Т

Which feature/attribute to split first?



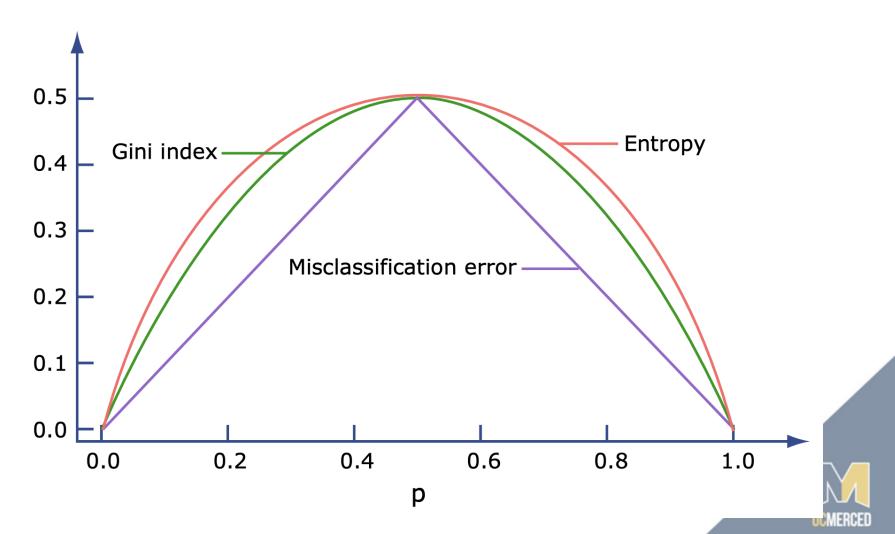
Which feature/attribute to split first?



□Idea: good attribute splits examples into subsets that are (ideally) *all positive* or *all negative*

Purity Criterion

□A node is pure if it contains instances of the same class



Information and Entropy

Information answers questions

The more clueless I am about the answer initially, the more information is contained in the answer

Scale: 1 bit = answer to Boolean question with prior $\langle 0.5, 0.5 \rangle$

Information in an answer when prior is $\langle P_1, \ldots, P_n \rangle$ is

$$H(\langle P_1, \ldots, P_n \rangle) = \sum_{i=1}^n - P_i \log_2 P_i$$

(also called entropy of the prior)

Convenient notation: $B(p) = H(\langle p, 1-p \rangle)$

Information before split

Suppose we have p positive and n negative examples at the root $\Rightarrow B(p/(p+n))$ bits needed to classify a new example E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

Information after split

Suppose we have p positive and n negative examples at the root $\Rightarrow B(p/(p+n))$ bits needed to classify a new example E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets E_k , each of which (we hope) needs less information to complete the classification

Let E_k have p_k positive and n_k negative examples $\Rightarrow B(p_k/(p_k + n_k))$ bits needed to classify a new example \Rightarrow expected number of bits per example over all branches is $\sum_{k=1}^{n_k} p_k + n_k$

$$\sum_i \frac{p_i + n_i}{p + n} B(p_k / (p_k + n_k))$$

For Patrons, this is 0.459 bits, for Type this is (still) 1 bit

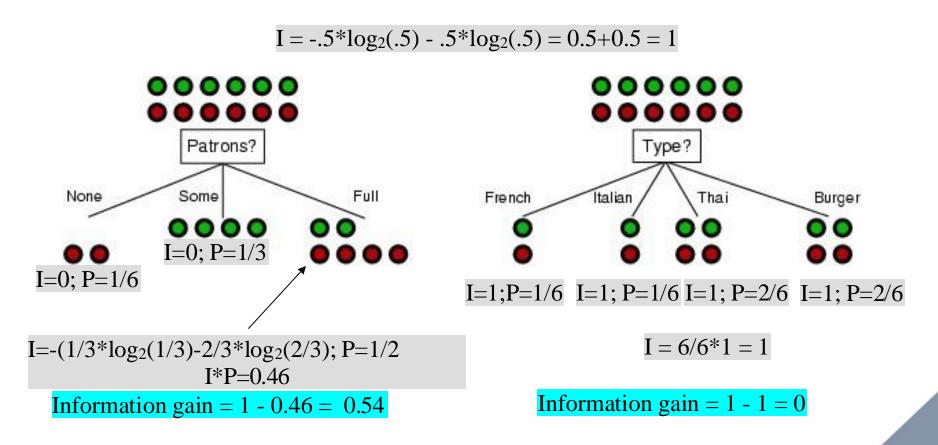
 \Rightarrow choose the attribute that minimizes the remaining information needed

Information Gain

 \Box Gain(X,T) = Info(T) - Info(X,T) is difference of

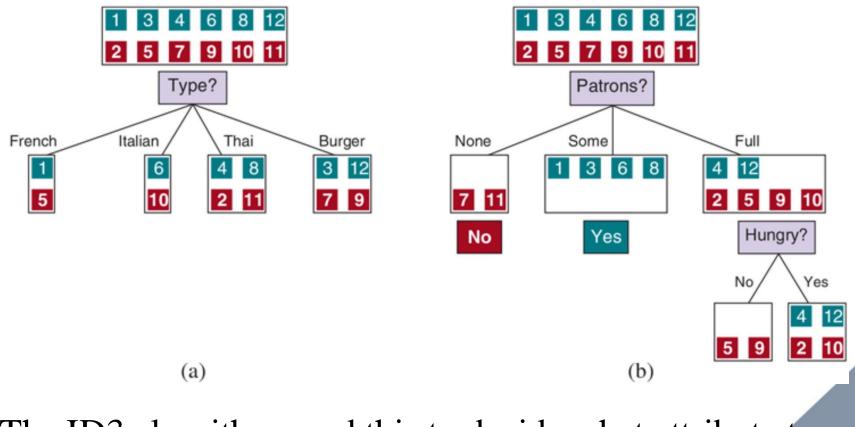
- □ info needed to identify element of T and
- □info needed to identify element of T after attribute X known
- □This is gain in information due to attribute X
- □Used to rank attributes and build DT

Information Gain



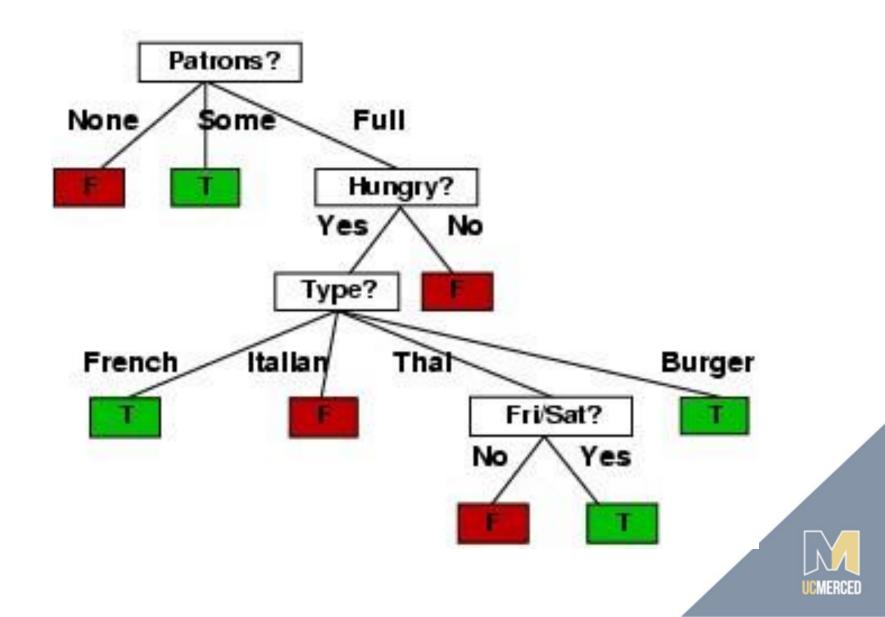
• Information gain for asking Patrons is 0.54, for asking Type is 0

Choosing Patrons Yields more Information



The ID3 algorithm used this to decide what attribute to ask bout next when building a decision tree

Decision tree by ID3 algorithm



Optimal splits for continuous attributes

Infinitely many possible split points c to define node test $X_j > c$?

No! Moving split point along the empty space between two observed values has no effect on purity; so just use midpoint

Moreover, only splits between examples from different classes can be optimal for purity

Regression Tree

□Purity criterion: variance E of values at a node

- □We consider a node to be pure if $E \le θ$ for a threshold θ > 0. In that case, we do not split it.
- □If a node m is not pure, we split it.
- □ Rather than assigning a constant output value to a leaf, we can assign it a regression function.

Overfitting, Early Stopping, and Pruning

- Growing the tree until each leaf is pure will produce a large tree that overfits.
- \Box Early stopping: we stop splitting if the impurity is below a user threshold $\theta > 0$.
- □*Pruning*: we grow the tree in full until all leaves are pure and the training error is zero. Then, we find subtrees that cause overfitting and prune them

Summary

- Efficient learning algorithm
- □ Handle both discrete and continuous inputs and outputs
- Robust against any monotonic input transformation, also against outliers
- Automatically ignore irrelevant features: no need for feature selection
- Decision trees are usually interpretable

What is next?

Ensemble models that combines multiple learners
Bagging
Boosting

