
CSE 176 Introduction to Machine Learning

Lecture 14: Decision Tree

Some materials from Stuart Russell and Miguel Carreira-Perpiñán

Recap: Attention between words

❑Example: English to French translation

❑Input: “The agreement on the

European Economic Area was

signed in August 1992.”

❑Output: “L’accord sur la zone

 économique européenne

a été signé en août 1992.”

Recap: Casual or backward-looking self-attention

❑Attends to all the inputs up to, and including, the current
one

Recap: Self-attention

Recap: Multi-head attention

Self attention v.s. Cross attention

❑Self Attention
❑Key, Value, and Query from the same set of tokens

❑Cross Attention
❑Key, and Value from one set of tokens

❑Query from another set of tokens

❑E.g. words in one language pay attention to words in another.

From Attention to Transformer Block

❑A transformer block has
❑Self Attention: information exchange between tokens

❑Feed forward network: Information transform within tokens

❑E.g. a multi-layer perceptron with 1 hidden layer

❑Normalization (Layer normalization)

❑Residual connection

Recap: Transformer-based Large Language Model

Recap: Vision Transformer

Decision Tree

Recap: The XOR problem

❑Can perceptron compute simple functions of input?

Minsky and Papert (1969)

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example wasfirst shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

Recap: Solution to the XOR problem

❑XOR can't be calculated by a single perceptron

❑XOR can be calculated by a layered network of units.

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example wasfirst shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

ReLU

ReLU

Recap: K nearest neighbor algorithm

❑Nearest neighbor often instable (noise)

❑For a test input x, assign the most common label amongst
its k most similar training inputs

Decision Tree

❑Unlike neural network, decision tree is interpretable

❑Unlike KNN algorithm, decision tree doesn’t store training
data

❑Can be used for both classification and regression

❑Select feature automatically

❑Efficient at test-time

Binary Classification

An example of Decision Tree

Rule extraction from decision tree

❑A regression tree:

❑R1: IF (age > 38.5) AND (years-in-job > 2.5) THEN y = 0.8

❑R2: IF (age > 38.5) AND (years-in-job ≤ 2.5) THEN y = 0.6

❑R3: IF (age ≤ 38.5) AND (job-type = ‘A’) THEN y = 0.4

❑R4: IF (age ≤ 38.5) AND (job-type = ‘B’) THEN y = 0.3

❑R5: IF (age ≤ 38.5) AND (job-type = ‘C’) THEN y = 0.2

Training Decision Tree

Restaurant Example

❑Develop decision tree that customers make when deciding
whether to wait for a table or leave

❑Two classes: wait, leave

❑Ten attributes:
❑Alternative available?

❑Bar in restaurant?

❑Is it Friday?

❑Are we hungry?

❑How full is restaurant?

❑How expensive?

❑Is it raining?

❑Do we have reservation?

❑What type of restaurant is it?

❑Estimated waiting time?

Training data

Decision Tree

❑How to decide whether to wait?

Discrete and continuous input

Discrete and continuous input

ID3 / C4.5 / J48 Algorithm

❑Greedy algorithm developed by Ross Quinlan in 1987

❑Top-down construction by recursively selecting best
attribute to use at current node
❑Once attribute selected for current node, generate child nodes

❑Partition examples using values of attribute

❑Repeat for each child node until examples associated with a
node are all positive or negative

Which feature/attribute to split first?

❑Probably Patron and Type

Which feature/attribute to split first?

Which feature/attribute to split first?

❑Idea: good attribute splits examples into subsets that are
(ideally) all positive or all negative

Purity Criterion

❑A node is pure if it contains instances of the same class

Information and Entropy

Information before split

Information after split

Information Gain

❑Gain(X,T) = Info(T) - Info(X,T) is difference of
❑info needed to identify element of T and

❑info needed to identify element of T after attribute X known

❑This is gain in information due to attribute X

❑Used to rank attributes and build DT

Information Gain stay

leave

I = -.5*log2(.5) - .5*log2(.5) = 0.5+0.5 = 1

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)-2/3*log2(2/3); P=1/2
I*P=0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 = 0

• Information gain for asking Patrons is 0.54, for asking Type is 0

Information gain = 1 - 0.46 = 0.54

I = 6/6*1 = 1

Choosing Patrons Yields more Information

The ID3 algorithm used this to decide what attribute to

ask bout next when building a decision tree

Decision tree by ID3 algorithm

Optimal splits for continuous attributes

❑Infinitely many possible split points c to define node test
 Xj > c ?

❑No! Moving split point along the empty space between two
observed values has no effect on purity; so just use
midpoint

❑Moreover, only splits between examples from different
classes can be optimal for purity

Regression Tree

❑Purity criterion: variance E of values at a node

❑We consider a node to be pure if E ≤ θ for a threshold θ > 0.
In that case, we do not split it.

❑If a node m is not pure, we split it.

❑Rather than assigning a constant output value to a leaf, we
can assign it a regression function.

Overfitting, Early Stopping, and Pruning

❑Growing the tree until each leaf is pure will produce a large
tree that overfits.

❑Early stopping: we stop splitting if the impurity is below a
user threshold θ > 0.

❑Pruning: we grow the tree in full until all leaves are pure
and the training error is zero. Then, we find subtrees that
cause overfitting and prune them

Summary

❑Efficient learning algorithm

❑Handle both discrete and continuous inputs and outputs

❑Robust against any monotonic input transformation, also
against outliers

❑Automatically ignore irrelevant features: no need for
feature selection

❑Decision trees are usually interpretable

What is next?

❑Ensemble models that combines multiple learners

❑Bagging

❑Boosting

	Slide 1
	Slide 2: Recap: Attention between words
	Slide 3: Recap: Casual or backward-looking self-attention
	Slide 4: Recap: Self-attention
	Slide 5: Recap: Multi-head attention
	Slide 6: Self attention v.s. Cross attention
	Slide 7: From Attention to Transformer Block
	Slide 8: Recap: Transformer-based Large Language Model
	Slide 9: Recap: Vision Transformer
	Slide 10
	Slide 11: Recap: The XOR problem
	Slide 12: Recap: Solution to the XOR problem
	Slide 13: Recap: K nearest neighbor algorithm
	Slide 14: Decision Tree
	Slide 15: Binary Classification
	Slide 16: An example of Decision Tree
	Slide 17: Rule extraction from decision tree
	Slide 18
	Slide 19: Restaurant Example
	Slide 20: Training data
	Slide 21: Decision Tree
	Slide 22: Discrete and continuous input
	Slide 23: Discrete and continuous input
	Slide 24: ID3 / C4.5 / J48 Algorithm
	Slide 25: Which feature/attribute to split first?
	Slide 26: Which feature/attribute to split first?
	Slide 27: Which feature/attribute to split first?
	Slide 28: Purity Criterion
	Slide 29: Information and Entropy
	Slide 30: Information before split
	Slide 31: Information after split
	Slide 32: Information Gain
	Slide 33: Information Gain
	Slide 34: Choosing Patrons Yields more Information
	Slide 35: Decision tree by ID3 algorithm
	Slide 36: Optimal splits for continuous attributes
	Slide 37: Regression Tree
	Slide 38: Overfitting, Early Stopping, and Pruning
	Slide 39: Summary
	Slide 40: What is next?

