
CSE 176 Introduction to Machine Learning

Lecture 14: Decision Tree

Some materials from Stuart Russell and Miguel Carreira-Perpiñán



Recap: Attention between words

❑Example: English to French translation

❑Input: “The agreement on the 

European Economic Area was

signed in August 1992.”

❑Output: “L’accord sur la zone

 économique européenne 

a été signé en août 1992.”



Recap: Casual or backward-looking self-attention

❑Attends to all the inputs up to, and including, the current 
one



Recap: Self-attention



Recap: Multi-head attention



Self attention v.s. Cross attention

❑Self Attention 
❑Key, Value, and Query from the same set of tokens

❑Cross Attention
❑Key, and Value from one set of tokens

❑Query from another set of tokens

❑E.g. words in one language pay attention to words in another.



From Attention to Transformer Block

❑A transformer block has
❑Self Attention: information exchange between tokens

❑Feed forward network: Information transform within tokens

❑E.g. a multi-layer perceptron with 1 hidden layer

❑Normalization (Layer normalization)

❑Residual connection



Recap: Transformer-based Large Language Model



Recap: Vision Transformer



Decision Tree



Recap: The XOR problem

❑Can perceptron compute simple functions of input?

Minsky and Papert (1969)
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Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example wasfirst shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The



Recap: Solution to the XOR problem

❑XOR can't be calculated by a single perceptron

❑XOR can be calculated by a layered network of units. 
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Recap: K nearest neighbor algorithm

❑Nearest neighbor often instable (noise)

❑For a test input x, assign the most common label amongst 
its k most similar training inputs



Decision Tree

❑Unlike neural network, decision tree is interpretable

❑Unlike KNN algorithm, decision tree doesn’t store training 
data

❑Can be used for both classification and regression

❑Select feature automatically

❑Efficient at test-time



Binary Classification



An example of Decision Tree



Rule extraction from decision tree

❑A regression tree:

❑R1: IF (age > 38.5) AND (years-in-job > 2.5) THEN y = 0.8

❑R2: IF (age > 38.5) AND (years-in-job ≤ 2.5) THEN y = 0.6

❑R3: IF (age ≤ 38.5) AND (job-type = ‘A’) THEN y = 0.4

❑R4: IF (age ≤ 38.5) AND (job-type = ‘B’) THEN y = 0.3

❑R5: IF (age ≤ 38.5) AND (job-type = ‘C’) THEN y = 0.2



Training Decision Tree



Restaurant Example

❑Develop decision tree that customers make when deciding 
whether to wait for a table or leave

❑Two classes: wait, leave

❑Ten attributes:
❑Alternative available?

❑Bar in restaurant? 

❑Is it Friday? 

❑Are we hungry? 

❑How full is restaurant? 

❑How expensive? 

❑Is it raining? 

❑Do we have reservation? 

❑What type of restaurant is it? 

❑Estimated waiting time?



Training data



Decision Tree

❑How to decide whether to wait?



Discrete and continuous input



Discrete and continuous input



ID3 / C4.5 / J48 Algorithm

❑Greedy algorithm developed by Ross Quinlan in 1987

❑Top-down construction by recursively selecting best 
attribute to use at current node 
❑Once attribute selected for current node, generate child nodes

❑Partition examples using values of attribute

❑Repeat for each child node until examples associated with a 
node are all positive or negative



Which feature/attribute to split first?

❑Probably Patron and Type



Which feature/attribute to split first?



Which feature/attribute to split first?

❑Idea: good attribute splits examples into subsets that are 
(ideally) all positive or all negative



Purity Criterion

❑A node is pure if it contains instances of the same class



Information and Entropy



Information before split



Information after split



Information Gain

❑Gain(X,T) = Info(T) - Info(X,T) is difference of
❑info needed to identify element of T and

❑info needed to identify element of T after attribute X known

❑This is gain in information due to attribute X

❑Used to rank attributes and build DT



Information Gain stay 

leave

I = -.5*log2(.5) - .5*log2(.5) = 0.5+0.5 = 1

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)-2/3*log2(2/3); P=1/2
I*P=0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 = 0

• Information gain for asking Patrons is 0.54, for asking Type is 0

Information gain = 1 - 0.46 = 0.54

I = 6/6*1 = 1



Choosing Patrons Yields more Information

The ID3 algorithm used this to decide what attribute to 

ask bout next when building a decision tree



Decision tree by ID3 algorithm



Optimal splits for continuous attributes

❑Infinitely many possible split points c to define node test
                                        Xj > c ?

❑No! Moving split point along the empty space between two 
observed values has no effect on purity; so just use 
midpoint

❑Moreover, only splits between examples from different 
classes can be optimal for purity



Regression Tree

❑Purity criterion: variance E of values at a node

❑We consider a node to be pure if E ≤ θ for a threshold θ > 0. 
In that case, we do not split it.

❑If a node m is not pure, we split it.

❑Rather than assigning a constant output value to a leaf, we 
can assign it a regression function.



Overfitting, Early Stopping, and Pruning

❑Growing the tree until each leaf is pure will produce a large 
tree that overfits.

❑Early stopping: we stop splitting if the impurity is below a 
user threshold θ > 0.

❑Pruning: we grow the tree in full until all leaves are pure 
and the training error is zero. Then, we find subtrees that 
cause overfitting and prune them



Summary

❑Efficient learning algorithm

❑Handle both discrete and continuous inputs and outputs

❑Robust against any monotonic input transformation, also 
against outliers

❑Automatically ignore irrelevant features: no need for 
feature selection

❑Decision trees are usually interpretable



What is next?

❑Ensemble models that combines multiple learners

❑Bagging

❑Boosting
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