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CSE 176 Introduction to Machine Learning
Lecture 16: Support Vector Machines

Materials from Olga Vekler and Miguel Carreira-Perpinan



Support Vector Machine

Start in 1979 with Vladimir Vapnik’s paper
(dMajor developments throughout 1990’s

(SVM v.s. Neural Network
ASVM is better with limited data
ASVM is more interpretable
ASVM is more robust to outlier
JSVM has elegant theory




Topics today

dintuition

dFormulation

JOptimization

dFrom linear to non-linear SVM (Kernel SVM)
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Intuition of SVM



Linear Discriminant Function

dWhich separating hyperplane should we choose?

g(x) =wix +w,

g(x)>0 = xeclass 1
g(x)<0 = xeclass 2




Margin Intuition

 If sample is close to sample x;, it is likely to be on the wrong side

 Poor generalization



Margin Intuition

 Hyperplane as far as possible from any sample

« (Good generalization



SVM

 Idea: maximize distance to the closest example

smaller distance

larger distance




SVM: Linearly Separable Case

« SVM: maximize the margin

A

« margin is twice the absolute value of distance b of the closest
example to the separating hyperplane



SVM: Linearly Separable Case

e Support vectors are samples closest to separating hyperplane
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Linear SVM



SVM: Formula for the Margin
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g(X) =witx +w, \sx X
« absolute distance between x and the ‘,g?“ 0

boundary g(x) =0 -
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SVM: Formula for the Margin

¢ gX)=wix +w, I @ X
 absolute distance between x and the g“ 8
boundary g(x) =0 (=
t o
‘W X +WO
o
W] o
« distance is unchanged for hyperplane g;(x)=a g(x) N
AW +aw,| WX +w|
Jaw]| |wi

Let x; be an example closest to the boundary. Set
‘W&i+WJ=1

Now the largest margin hyperplane is unigue



SVM: Formula for the Margin

« For unigqueness, set \th T WO\ =1 for any example x; closest to
the boundary

« now distance from closest sample x;to g(x) =0 Is

« Thusthe marginis

2

[wi




SVM: Optimal Hyperplane

2

e Maximize margin m=—
wi

e subject to constraints
w'x, +w,>1 if x, is positive example
wx +w,<-1 ifx, is negative example

o Lot z =1 if x, is positive example
z =-1 if x, is negative example

e Convert our problem to

minimize J(w):%”w”z

constrainedto  z'(w'x, +w,)>1 Vi

e J(w) is a convex function, thus it has a single global minimum



SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize L, ( Zoc ——ZZa,an,sz,xJ

|1]1

constrained to o, >0 Vi and Zocizi:

a ={a,,..,a .} are new variables, one for each sample
L,(a) can be optimized by quadratic programming

L (a) formulated in terms of a

e depends onw and w,



SVM: Optimal Hyperplane

o After finding the optimal a ={a,..., o}

e for every sample i, one of the following must hold

® o, =0 (samplei is not a support vector)

e o, #0and z(w'x+w,-1) =0 (sample i is support vector)

* compute w=> ozx,
i=1
e solve forwyusingany a; >0 and «; [Zi(wtxi +w0)—1]=0
1

I
W,=——WX,

Z

e Final discriminant function:

g(x):(éaizixi)tx+wo

e where Sis the set of support vectors

S={x,|a, =0}



SVM: Non Separable Case

e Linear classifier still be appropriate when data is not linearly
separable, but almost linearly separable

outliers

e Can adapt SVM to almost linearly separable case



SVM as Unconstrained Minimization

SVM objective can be rewritten as unconstrained optimization

Jw)= %HWH + Bgmax(o, 1-2zf(x,))

weights

\ J

| ]
loss function

regularization

e z f(x)>1: x; ison the right side
of the hyperplane and outside

margin, no loss

e zf(x)=1: x onthe margin, no
loss

e z f(x)<1: x; isinside margin, or
on the wrong side of the
hyperplane, contributes to loss

A

A




SVM: Hinge Loss

SVM uses Hinge loss per sample x;

L, (Xi ) - max(O, 1- zif(xi ))

— Hinge loss

L(xi) — Zero-one loss
— Logistic loss

Hinge loss encourages classification with a margin of 1



SVM: Hinge Loss

e (Can optimize with gradient descent, convex function

Jw)= %HWH + Bgmax(o, 1-2zf(x,))

e Gradient L(x;)
\

w-oa(w-Bzx,) if zf(x)<1

e Gradient descent, single W = ,
W — OW otherwise

sample
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Non-linear SVM (Kernel SVM)



Non Linear Mapping

e Cover’s theorem:

e “pattern-classification problem cast in a high dimensional space non-linearly is
more likely to be linearly separable than in a low-dimensional space”

e Not linearly separablein 1D e Lift to 2D space with h(x) = (x,x?)

HSa8—0 00
O O

-3 -2 O 1 2 3 4
/O




Non Linear Mapping

e Tosolve a non linear problem with a linear classifier
1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data @(x)
3. Final nonlinear discriminant function is g(x) = wt @(x) +w,

@(x) = (x,x*) \

]
5B 0 0666005 o /
3 2 0 1 2 3 4 a .

:R :R: R‘ /‘
2 1 2 . ,

¢ In 2D, discriminant function is linear

ey ¥ ]x<1>
Bl |, @ |7 Wall ) |7 Wo

* In 1D, discriminant function is not linear  g(x)=w,x+w,x* +w,



Non Linear Mapping: Another Example




Non Linear SVM

e (Can use any linear classifier after lifting data into a higher
dimensional space

e However we will have to deal with the “curse of dimensionality”
1. poor generalization to test data
2. computationally expensive

e SVM avoids the “curse of dimensionality” by
e enforcing largest margin permits good generalization

e computation in the higher dimensional case is performed only
implicitly through the use of kernel functions



Non Linear SVM: Kernels

Recall SVM optimization

maximize Zoc ——ZZoc,oclzlszli

|111

Optimization depends on samples x; only through the dot
product x.x

If we lift x; to high dimension using ¢@(x), need to compute high
dimensional product (p(x,-)t(p(xj)

maximize Ly( Zoc ——ZZa,a z2.0(x, ) o(x,)

i=1 j=1
K(x|lx )

Idea: find kernel function K(x;,x;) s.t. K(x;%;) = ¢@(x;) ¢ (x;)



Non Linear SVM: Kernels

maximize LD(OC):ZH:OH _%iiaiaizizj(p(xi)t(p(xj)
i=1

i1 jo1
K(Xi,Xj)

e Kernel trick
* only need to compute K(x;x;) instead of ¢(x;)'¢(x;)

e no need to lift data in high dimension explicitely,
computation is performed in the original dimension



Non Linear SVM: Kernels

Suppose we have 2 features and K(x,y) = (x'y)?

Which mapping ¢(x) does it correspond to?

v)=(x'yf = ([" (2)]{ ()Dzz(x<1>y<1>+x<z>y<z>)z
=(X(1 D) 24 2(x Wy @ Yx @y @ ) 4 (x @Dy @ f
o F Vax® (@F o F 2y y e (]




Non Linear SVM: Kernels

How to choose kernel K(x;,x;)?

*  K(x;,x;) should correspond to product ¢(x;)'¢(x;) in a higher
dimensional space

e Mercer’s condition states which kernel function can be
expressed as dot product of two vectors

e Kernel’s not satisfying Mercer’s condition can be sometimes
used, but no geometrical interpretation

Common choices satisfying Mercer’s condition

e Polynomial kernel K(xi,xj)z(xitxj+1)p

e Gaussian radial Basis kernel (data is lifted in infinite dimensions)

K(xi,xj)zexp(— = Hxi —xszj

262




Non Linear SVM

e search for separating hyperplane in high dimension

wq)(x)+ w,=0

e  Choose @(x) so that the first (“0”th) dimension is the augmented
dimension with feature value fixed to 1

(p(x):[l x5 x(l)x(z)]‘

e Threshold w, gets folded into vector w

w, W] 1|0

¢ (x)



Non Linear SVM

e Thus seeking hyperplane

wo(x)=0

e Or, equivalently, a hyperplane that goes through the
origin in high dimensions
e removes only one degree of freedom

e but we introduced many new degrees when lifted the data
in high dimension



Non Linear SVM Recepie

Start with x,,...,x,, in original feature space of dimension d

Choose kernel K(x;,x;)
. implicitly chooses function ¢(x;) that takes x; to a higher dimensional space
. gives dot product in the high dimensional space

Find largest margin linear classifier in the higher dimensional
space by using quadratic programming package to solve

maximize Lo ( Zo‘ ——ZZOL.OL.Z.Z,K(X X; )

|111

constrained to 0<o. <P Vi and Zocizizo
i=1




Non Linear SVM Recipe

e  Weight vector win the high dimensional space

w=Y azolx)

X; €S

e where S is the set of support vectors
S={x |0, #0]

e Linear discriminant function in the high dimensional space

g((p(X)) = Wt(P(x) = [Zaiziq)(xi )J (P(x)

X; €S

e Non linear discriminant function in the original space:

te)~| Saotn) | o) - Zomo't o) - Sonakto, 0

X;€S X; €S X; €S

e Decideclass 1if g(x) >0, otherwise decide class 2



Non Linear SVM

Nonlinear discriminant function

g(x) = Z O Z; K(xi,x)
X; €S
g(x) _ Z weight of support | |F1 be,f\',\r/g'é?]”;\énd
vector X; support vector x.

most important
_training samples, 1
l.e. support vectors K(xi,x):exp —

262
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SVM Example: XOR Problem

e C(Class1:x,=1[1,-1], x,=[-1,1]
e C(Class2:x;=[1,1], x,=[-1,-1] u O

e  Use polynomial kernel of degree 2
o Kix;,x) = (x;*x;+ 1) O L

e Kernel corresponds to mapping

(x):[l V2x® o 2x® J2xWx® (X(l))2 (x(z))z]t

4
e Need to maximize L[,(Ot)=Zoci —ZZoc,oc,z,zJ(xi‘xj +1)2
i=1

|111

constrained to 0<a, Vi and o, +a,—a,—0a, =0



SVM Example: XOR Problem

Rewrite

o where

9 1
1 9
-1 -1

Take derivative with respect to oo and setitto 0

1

1
1
_1_

Solution to the aboveis ;= a, = a3 =a, = 0.25

9
1
-1

-1

1
9
-1
-1

-1
-1
9
1

-1
-1
1
9

Il
o

-1 -1

-1
-1
9
1

-1
-1
1
9

satisfies the constraints Vi, 0<a, and o, +a, —o, —a, =0

all samples are support vectors




SVM Example: XOR Problem

(X)=[1 \/Ex(l) ﬁx(Z) ﬁx(l)x(z) (x(l))z (x(z))z]t

Weight vector w is:

w= iocizi(p(xi) = 0.25(p(x, )+ ¢(x, ) - 9(x;) - o(x, )
- o 0o 0o 2 0 o

* by plugglng in X, = [1)_1]1 X, = [_111]1 X;= [1)1]) Xy = [_1)_1]

Nonlinear discriminant function is

g0 =wol)= > wio (x) = V2(/2x"x) = 21



SVM Example: XOR Problem

g(x)=—-2x"x®?

decision boundaries nonlinear decision boundary is linear



Degree 3 Polynomial Kernel

e Left: Inlinearly separable case, decision boundary is roughly
linear, indicating that dimensionality is controlled

e Right: nonseparable case is handled by a polynomial of degree 3



SVM Summary

e Advantages:
e nice theory
e good generalization properties
e objective function has no local minima
e can be used to find non linear discriminant functions
e often works well in practice, even if not a lot of training data

e Disadvantages:
e tends to be slower than other methods
e quadratic programming is computationally expensive
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