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Lecture 16: Support Vector Machines

Materials from Olga Vekler and Miguel Carreira-Perpiñán



Support Vector Machine

❑Start in 1979 with Vladimir Vapnik’s paper

❑Major developments throughout 1990’s

❑SVM v.s. Neural Network
❑SVM is better with limited data

❑SVM is more interpretable

❑SVM is more robust to outlier

❑SVM has elegant theory



Topics today

❑Intuition

❑Formulation

❑Optimization

❑From linear to non-linear SVM (Kernel SVM)



Intuition of SVM



Linear Discriminant Function

❑Which separating hyperplane should we choose?

g(x)=wtx +w0

g(x)<0

⇒ x∈class 1

⇒ x∈class 2

g(x)>0



Margin Intuition

• If sample is close to sample xi, it is likely to be on the wrong side

xi

• Poor generalization



Margin Intuition

• Hyperplane as far aspossible from any sample

xi

• Good generalization



SVM

• Idea: maximize distance to the closest example

xi xi

smaller distance larger distance



SVM: Linearly Separable Case

• SVM: maximize the margin

• margin is twice the absolute value of distance b of the closest 

example to the separating hyperplane



SVM: Linearly Separable Case

• Supportvectors are samples closest to separating hyperplane



Linear SVM



SVM:Formula for the Margin

x• g(x)=wtx +w0

• absolute distance between xand the

boundary g(x) = 0

wt x + w
0

w



SVM:Formula for the Margin

x• g(x)=wtx +w0

• absolute distance between xand the 

boundary g(x) = 0

wt x + w
0

w

• distance is unchanged for hyperplane g1(x)=αg(x)

0

αw w

0αwtx +αw wtx +w
=

• Let xibe an example closest to the boundary. Set

wtx i +w =1
0

• Now the largest margin hyperplane is unique



SVM: Formula for the Margin

• now distance from closest sample xi to g(x) = 0 is
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• Thus the margin is
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SVM: Optimal Hyperplane 

• Use Kuhn-Tucker theorem to convert our problem to:

maximize 

constrained to 
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• α  = {α1,…,α n} are new variables, one for each sample
 • LD(α) can be optimized by quadratic programming

• LD(α) formulated in terms of α
• depends on w and w0



SVM: Optimal Hyperplane 

• Final discriminant function:
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• After finding the optimal  α  = {α1,…, αn}
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• αi = 0 (sample i  is not a support vector)
• αi ≠ 0 and  zi(wtxi+w0 - 1) = 0 (sample i  is support vector)
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SVM: Non Separable Case 

• Linear classifier still be appropriate when data is not linearly
separable, but almost linearly separable

outliers 

• Can adapt SVM to almost linearly separable case



SVM as Unconstrained Minimization 

weights 
regularization 

loss function 

• SVM objective can be rewritten as unconstrained optimization
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• zi f(xi) > 1 :  xi  is on the right side
of the  hyperplane and outside
margin, no loss

• zi f(xi) = 1 :   xi  on the margin, no
loss

• zi f(xi) < 1 :  xi  is inside margin, or
on the wrong side of the
hyperplane, contributes to loss



SVM: Hinge Loss 
• SVM uses Hinge loss per sample xi

( ) ( )( )iiii xfzxL −= 1,0max

• Hinge loss encourages classification with a margin of 1
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SVM: Hinge Loss 
• Can optimize with gradient descent, convex function
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• Gradient   descent, single
sample
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Non-linear SVM (Kernel SVM)



Non Linear Mapping 
• Cover’s theorem:

• “pattern-classification problem cast in a high dimensional space non-linearly is
more likely to be linearly separable than in a low-dimensional space”

• Not linearly separable in 1D

0 1 2 3 4 -2-3 

• Lift to 2D space with h(x) = (x,x2 )



Non Linear Mapping 

• To solve a non linear problem with a linear classifier
1. Project data x to high dimension using function ϕ(x)
2. Find a linear discriminant function for transformed data ϕ(x)
3. Final nonlinear discriminant function is g(x) = wt ϕ(x) +w0

0 1 2 3 4 -2-3 

 ϕ(x) = (x,x2 ) 

• In 2D, discriminant function is linear
( )

( ) [ ]
( )

( ) 02

1

212

1

w
x
x

ww
x
x

g +







=



















• In 1D, discriminant function is not linear ( ) 0
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Non Linear Mapping: Another Example 



Non Linear SVM 

• Can use any linear classifier after lifting data into a higher
dimensional space

• However we will have to deal with the “curse of dimensionality”
1. poor generalization to test data
2. computationally expensive

• SVM avoids the “curse of dimensionality” by
• enforcing largest margin permits good generalization
• computation in the higher dimensional case is performed only

implicitly through the use of kernel functions



Non Linear SVM: Kernels 

• Recall SVM optimization
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• Optimization depends on samples xi only through the dot
product  xi

txj

• If we lift xi  to high dimension using φ(x), need to compute high
dimensional product φ(xi)tφ(xj)
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• Idea: find kernel function K(xi,xj) s.t.  K(xi,xj) = φ(xi)tφ(xj)

K(xi,xj) 



Non Linear SVM: Kernels 

• Kernel trick
• only need to compute K(xi,xj) instead of φ(xi)tφ(xj)
• no need to lift data in high dimension explicitely,

computation is performed in the original dimension
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Non Linear SVM: Kernels 

• Suppose we have 2 features and K(x,y) = (xty)2

• Which mapping φ(x) does it correspond to?
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Non Linear SVM: Kernels 

• How to choose kernel K(xi,xj)?
• K(xi,xj) should  correspond to  product φ(xi)tφ(xj)  in a higher

dimensional space
• Mercer’s condition states which kernel function can be

expressed as  dot product of two vectors
• Kernel’s not satisfying Mercer’s condition can be sometimes

used, but no geometrical interpretation

• Common choices satisfying Mercer’s condition
• Polynomial kernel ( ) ( )p

j
t
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• Gaussian radial Basis kernel (data is lifted in infinite dimensions)
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Non Linear SVM 

• Choose ϕ(x) so that the first (“0”th) dimension is the augmented
dimension with feature value fixed to 1

( ) ( ) ( ) ( ) ( )[ ]txxxxx 21211=ϕ

• search for separating hyperplane in high dimension

( ) 00 =+ϕ wxw

• Threshold w0 gets folded into  vector w
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Non Linear SVM 

• Thus seeking hyperplane

( ) 0=ϕ xw

• Or, equivalently, a hyperplane that goes through the
origin in high dimensions

• removes only one degree of freedom
• but we  introduced many new degrees when lifted the data

in high dimension



Non Linear SVM Recepie 

• Choose kernel K(xi,xj)
• implicitly chooses function φ(xi)  that takes xi  to a higher dimensional space
• gives dot product in the high dimensional space

• Start with x1,…,xn in original feature space of dimension d

• Find  largest margin linear classifier in the higher dimensional
space by using quadratic programming package to solve

maximize 
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Non Linear SVM Recipe 

• Linear discriminant function in the high dimensional space
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• where S is the set of support vectors
{ }0| ≠α= iixS
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• Non linear discriminant function in the original space:
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• Decide class 1 if g(x ) > 0, otherwise decide class 2
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• Weight vector w in  the high dimensional space
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Non Linear SVM 
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• Nonlinear discriminant function

( ) ∑=xg
most important 

training samples, 
i.e. support vectors

weight of support 
vector  xi

1 similarity 
between x and 

support vector xi 
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SVM Example: XOR Problem 

• Class 2: x3 = [1,1], x4 = [-1,-1]

• Class 1: x1 = [1,-1], x2 = [-1,1]

• Use polynomial kernel of degree 2
• K(xi,xj) = (xi 

t
 xj + 1)2

• Kernel corresponds to mapping
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SVM Example: XOR Problem 

• Rewrite ( ) αα−α=α ∑
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• Take derivative with respect to α  and set it to  0
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• Solution to the above is α1= α2 = α3 = α4 = 0.25

• all samples are support vectors
• satisfies the constraints 00, 4321 =α−α−α+αα≤∀ andi i



SVM Example: XOR Problem 

• Weight vector w  is:
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• Nonlinear discriminant function is
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• by plugging in  x1 = [1,-1], x2 = [-1,1], x3 = [1,1], x4 = [-1,-1]



SVM Example: XOR Problem 
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Degree 3 Polynomial Kernel 

• Left: In linearly separable case, decision boundary is roughly
linear, indicating that dimensionality is controlled

• Right: nonseparable case is handled by a polynomial of degree 3



SVM Summary 
• Advantages:

• nice theory
• good generalization properties
• objective function has no local minima
• can be used to find non linear discriminant functions
• often works well in practice, even if not a lot of training data

• Disadvantages:
• tends to be slower than other methods
• quadratic programming is computationally expensive
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