
CSE 176 Introduction to Machine Learning
Lecture 2: Linear Algebra, Probability and Statistics



Recap: Different AI systems



Recap: Major Types of machine learning

qSupervised learning: Given pairs of input-output, learn to 
map the input to output
qImage classification
qSpeech recognition
qRegression (continuous output)

qUnsupervised learning: Given unlabeled data, uncover the 
underlying structure or distribution of the data
qClustering
qDimensionality reduction

qReinforcement learning: training an agent to make decisions 
within an environment to maximize a cumulative reward
qGame playing (e.g., AlphaGo)
qRobot control



Linear Algebra



Linear Algebra Topics

qScalars, Vectors, Matrices and Tensors
qMultiplying Matrices and Vectors
qIdentity and Inverse Matrices
qLinear Dependence and Span
qNorms
qSpecial kinds of matrices and vectors
qEigen decomposition
qSingular value decomposition
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Scalar, Vector, Matrix, Tensor

qScalar: A single number (real-valued or integer)
qVector: An array of numbers arranged in order

qMatrix: 2D Array of numbers

qTensor: Sometimes need an array with more than two axes
qE.g., an RGB color image has three axes



Types of matrices



Matrix times matrix
– If A is of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

– Note that the standard product of two matrices is 
not just the product of two individual elements

• Such a product does exist and is called the element-wise 
product or the Hadamard product A0B

C = AB ÞC i , j =åAi,kBk,j
k
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Matrix times vector: Linear transformation

• Ax=b
– where AÎRn´n and x, bÎRn

– More explicitly

• Sometimes we wish to solve for the unknowns
x ={x1,..,xn} when A and b provide constraints

A11x1+ A12x2+....+ A1nxn= b1
A21x1+ A22x2+....+ A2nxn= b2

An1x1+ Am2x2+....+ An,nxn= bn
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Can view A as a linear transformation
of vector x to vector b
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Matrix inverse

• Inverse of square matrix A defined as
• We can now solve Ax=b as follows:

Ax =b
A-1Ax=A-1b

-1
Inx =A b
x =A-1b

• This depends on being able to find A-1

A-1A= I
n
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Matrix inverse

qFor a 2x2 matrix:

qThe inverse is :

qQuiz: find the inverse of ABT

qAnswer:



Norms

• Used for measuring the size of a vector
• Norms map vectors to non-negative values
• Norm of vector x=[x1,..,xn]T is distance from origin to x

– It is any function    f that satisfies:
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Lp Norm
• Definition:

– L2 Norm
• Called Euclidean norm

– Simply the Euclidean distance 
between the origin and the point x

– written simply as | |x | |
– Squared Euclidean norm is same as xTx

• Sum of absolute value for each xi

– L∞ Norm • Called max norm
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– L1 Norm



Special kind of vectors
• Unit Vector

– A vector with unit norm

• Orthogonal Vectors

– A vector xand a vector yare 
orthogonal to each other if xTy=0

– Orthonormal Vectors
• Vectors are orthogonal & have unit norm
• Orthogonal Matrix

– A square matrix whose rows are mutually

orthonormal:    ATA=AAT=I 
A-1=AT

–

2
x =1
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Eigenvector

• An eigenvector of a square matrix A is
a non-zero vector v such that 
multiplication by Aonly changes the
scale of v

Av=λv
– The scalar λ is known as eigenvalue

• If v is an eigenvector of A, so is any
rescaled vector sv. Moreover svstill
has the same eigen value. Thus look
for a unit eigenvector

Wikipedia
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Eigendecomposition
• Suppose that matrix Ahas n linearly 

independent eigenvectors {v(1),..,v(n)} with 
eigenvalues {λ1,..,λn}

• Concatenate eigenvectors to form matrix V
• Concatenate eigenvalues to form vector
λ=[λ1,..,λn]

• Eigendecomposition of A is given by
A=Vdiag(λ)V-1
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Effect of eigenvalue and eigenvector

• Example of 2 × 2  matrix
• Matrix A with two orthonormal eigenvectors

• – v(1) with eigenvalue λ1, v(2) with eigenvalue λ2

Plot of unit vectors uÎU2

(circle)
Plot of vectors Au
(ellipse)

with two variables x1 and x2
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Positive Semidefinite Matrix (PSD)

• A matrix whose eigenvalues are all positive is called
positive definite
– Positive or zero is called positive semidefinite

• If eigen values are all negative it is negative 
definite
– Positive definite matrices guarantee that xTAx≥0
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Singular Value Decomposition (SVD)

• Eigendecomposition has form: A=Vdiag(λ)V-1

– If A is not square, eigendecomposition is undefined
• SVD is a decomposition of the form A=UDVT

• SVD is more general than eigendecomposition
– Used with any matrix rather than symmetric ones
– Every real matrix has a SVD

• Same is not true of eigen decomposition
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Probability and Statistics



Random Variable

• Variable that can take different values randomly
• Scalar random variable denoted x
• Vector random variable is denoted in bold as x
• Values of r.v.s denoted in italics x or x

– Values denoted as Val(x)={x1,x2}
• Random variable must has a probability distribution

to specify how likely the states are
• Random variables can be discrete or continuous

– Discrete values need not be integers, can be named states
– Continuous random variable is associated with a real value
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Probability Distribution

qA probability distribution is a description of how likely a 
random variable or a set of random variables is to take each 
of its possible states

qThe way to describe the distribution depends on whether it 
is discrete or continuous
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Continuous Variables and PDFs

• When working with continuous variables, we 
describe probability distributions using probability
density functions

• To be a pdf p must satisfy:
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Marginal distribution

qSometimes we know the joint distribution of several 
variables

qAnd we want to know the distribution over some of them
qIt can be computed using
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Conditional probability

• We are often interested in the probability of an event given
that some other event has happened

• This is called conditional probability
• It can be computed using
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Chain rule of conditional probability

• Any probability distribution over many variables can
be decomposed into conditional distributions over
only one variable

• An example with three variables
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Independence and conditional independence

• Independence:
– Two variables x and y are independent if their probability

distribution can be expressed as a product of two factors,
one involving only x and the other involving only y

• Conditional Independence:
– Two variables x and y are independent given variable z, if

the conditional probability distribution over x.    and y 
factorizes in this way for every z
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Common probability distribution

• Several simple probability distributions are 
useful in may contexts in machine learning
– Bernoulli over a single binary random variable
– Multinoulli distribution over a variable with k states
– Gaussian distribution
– Mixture distribution
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Mixture of Distribution
• A mixture distribution is made up of several 

component distributions
• On each trial, the choice of which component 

distribution generates the sample is determined by
sampling a component identity from a multinoulli
distribution:

– where P(c) is a multinoulli distribution

32
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Gaussian mixture model

• Components p(x|c=i) are Gaussian
• Each component has a separately 

parameterized mean µ(i) and covariance Σ(i)
• Any smooth density can be approximated with 

enough components
• Samples from a GMM:

– 3 components
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Quiz

qA random variable, X, has the probability distribution table 
as shown.



Bayes’s rule

qBayes' theorem (alternatively Bayes' law or Bayes' 
rule), named after Thomas Bayes, describes 
the probability of an event, based on prior knowledge 
of conditions that might be related to the event.

qFor example, if the risk of health problems is known to 
increase with age, Bayes' theorem allows the risk to an 
individual of a known age to be assessed more 
accurately by conditioning it relative to their age.
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Quiz



Quiz

qA motor insurance company insures drivers in age group A, 
B and C. 40% of the customers are in group A, 25% are in B, 
and 35% are in group C. The company’s record shows that 
each year, 2% of customers in age group A, 1% in group B 
and 1.5% in group C made a claim. Given that a driver made 
a claim, what is the probability that the driver is from age 
group C?


