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CSE 176 Introduction to Machine Learning
Lecture 2: Linear Algebra, Probability and Statistics



Recap: Different Al systems

Deep learning Example:
Shallow
Example: autoencoders
MLPs

Example: Example:
Logistic Knowledge
regression bases

Representation learning

Machine learning




Recap: Major Types of machine Ieaﬁ\

ASupervised learning: Given pairs of input-output, learn to
map the input to output
dImage classification
Speech recognition
(JRegression (continuous output)

dUnsupervised learning: Given unlabeled data, uncover the
underlying structure or distribution of the data

U Clustering
Dimensionality reduction

JReinforcement learning: training an agent to make decisions
within an environment to maximize a cumulative reward

U Game playing (e.g., AlphaGo)
dRobot control
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Linear Algebra Topics

AScalars, Vectors, Matrices and Tensors
JMultiplying Matrices and Vectors
dIdentity and Inverse Matrices
Linear Dependence and Span
dNorms

dSpecial kinds of matrices and vectors
(JEigen decomposition

Singular value decomposition




Scalar, Vector, Matrix, Tensor

AScalar: A single number (real-valued or integer)

JVector: An array of numbers arranged in order

A

2,1 2,2

o A A
IMatrix: 2D Array of numbers A{ b 12]

JTensor: Sometimes need an array with more than two axes
UE.g., an RGB color image has three axes




Types of matrices

1 3 a b |
-4 7 c d

Square matrix e 1
2x2 Rectangular
matrix
%2
1 9 -3 0] ]
Row matrix 2
1x4 6

Column matrix
3x1

Identity matrix
3x3




Matrix times matrix

— If 4 1s of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

C=AB=C,, =) AB,
k

— Note that the standard product of two matrices is
not just the product of two individual elements

» Such a product does exist and is called the element-wise
product or the Hadamard product 40 B




Matrix times vector: Linear transformation

e Ax=b
—where AcR™ and X, beR"
— More expliCitly [ 4.+, +..+ 40,5,

Ayx;+ Apx, +.t Ayx, = b,

n equations in
n unknowns

Appe;+ Appx, +..+ Apx, = by,
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b . . .
i Can view 4 as a linear transformation

1 n |
I of vector x to vector b

|
X b |
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« Sometimes we wish to solve for the unknow
x ={x1,..,.x,} when 4 and b provide constrai
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Matrix inverse

* Inverse of square matrix 4 defined as A'A=I

 \We can now solve Ax=b as follows:
Ax=b
A'Ax=A"b
hx=A4b
x=A"b

* This depends on being able to find 4!




Matrix inverse

JFor a 2x2 matrix:

The inverse is :

1 d —b
Al =
ad — be (—C a)

JQuiz: find the inverse of ABT

A=[3 —1 1]’32 2 2 1]

2 0 2 011
JAnswer: 5 11 2 0 £ 0
T _ - . _
AB” = [2 0 2] 21 6 2]
1 1)
_ 2 0 2 0
(ABT) 1=5.210.6.[_6 -4 [_6 0




Norms

» Used for measuring the size of a vector
 Norms map vectors to non-negative values

* Norm of vector x=[x,...x,JT is distance from origin to x
—Itis any function f that satisfies:

flz)=0=2z=0
flx+y)< f(a:)-/— f(y) Triangle Inequality
VoaeR f(aa:):‘oc|f(a:)




LP Norm

e Definition:

1
el -S|
—[2Norm :

 Called Euclidean norm
— Simply the Euclidean distance 1
between the origin and the point x i~ S

2

— written simply as || x| | %
— Squared Euclidean norm is same as x'x

— L"Norm
« Sum of absolute value for each x;

afc‘zi‘ » Called max norm

A

— L= Norm HiBH =m
o0
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Special kind of vectors

o Unit Vector ST
— A vector with unit norm ‘ML=1 [ _3H0H _2}
* Orthogonal Vectors

— Avector xand a vector yare
orthogonal to each other if x'y=0

— Orthonormal Vectors
* Vectors are orthogonal & have unit norm

* Orthogonal Matrix
— A square matrix whose rows are mutually

— orthonormal: ATA=AAT=/
A1=AT




Eigenvector

* An eigenvector of a square matrix Ais
a non-zero vector vsuch that

multiplication by Aonly changes the e —
scale of v ,
Av=lv /
— The scalar A is known as eigenvalue 0 XWX
» If vis an eigenvector of A, so is any Mghg;:dhghm
rescaled vector sv. Moreover sv still Wikipedia

has the same eigen value. Thus look
for a unit eigenvector




Eigendecomposition

« Suppose that matrix Ahas n linearly
independent eigenvectors {v(),..,vin} with
eigenvalues {A4,..,\,}

« Concatenate eigenvectors to form matrix V
« Concatenate eigenvalues to form vector
A=[A1,..,\n]
» Eigendecomposition of Ais given by
A=Vdiag(») /'




Effect of eigenvalue and eigenvector

 Example of 2 x2 matrix

* Matrix Awith two orthonormal eigenvectors

 — VIl with eigenvalue A4, VI2) with eigenvalue A,

Plot of unit vectors u €U’

(circle)

Before multiplication

1r o

— 0_
@

—1}

with two variables x4 and x»

Plot of vectors Au
(ellipse)

After multiplication




Positive Semidefinite Matrix (PSD)

* A matrix whose eigenvalues are all positive is called
positive definite
— Positive or zero is called positive semidefinite

* If eigen values are all negative it is negative
definite
— Positive definite matrices guarantee that xAx20




Singular Value Decomposition (SVD)

» Eigendecomposition has form: A=Vdiag(})\*!
— If A i1s not square, eigendecomposition is undefined
* SVD is a decomposition of the form A=UDV"

* SVD is more general than eigendecomposition
— Used with any matrix rather than symmetric ones

— Every real matrix has a SVD
« Same is not true of eigen decomposition
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Random Variable

 Variable that can take different values randomly
« Scalar random variable denoted x

* Vector random variable is denoted in bold as

* Values of r.v.s denoted in italics x or x

— Values denoted as Val(x)={x;,x,}

 Random variable must has a probability distribution
to specify how likely the states are

« Random variables can be discrete or continuous

— Discrete values need not be integers, can be named states
— Continuous random variable is associated with a real value




Probability Distribution

A probability distribution is a description of how likely a
random variable or a set of random variables is to take each
of its possible states

JThe way to describe the distribution depends on whether it
is discrete or continuous




Continuous Variables and PDFs

» When working with continuous variables, we
describe probability distributions using probability
density functions

* To be a pdf p must satisfy:

e The domain of p must be the set of all possible states of x.
e Vx € x,p(x) > 0. Note that we do not require p(x) < 1.

o [p(r)dx =1.




Marginal distribution

dSometimes we know the joint distribution of several
variables

JANnd we want to know the distribution over some of them

It can be computed using

Y Ew Fle=8]= ZP(X =45 =)
y

p(x) = / p(z,y)dy




Conditional probability

« We are often interested in the probability of an event given
that some other event has happened

« This is called conditional probability
It can be computed using

P(y:y,}{:.’ﬂ)

Ply=y|x=xz)= Plx=1)




Chain rule of conditional probability

* Any probability distribution over many variables can
be decomposed into conditional distributions over
only one variable

P, .xM) = PP | xD,... x)

&

* An example with three variables
Plalxdl = .Pla|b.c)F(bx)
Plbey = PlblelPle)
Plasbe) = Pla| beelPtl | 8 Plo)




Independence and conditional independence

* |ndependence: |xLly

— Two variables x and y are independent if their probability
distribution can be expressed as a product of two factors,
one involving only x and the other involving only y

Veex,yey, px=x,y=vy) =px=2)p(y =y)
» Conditional Independence: [xLy |z

— Two variables x and y are independent given variable z, if
the conditional probability distribution over x. andy
factorizes in this way for every z

YVeexyeyzen plr=ny=yg|lz=z) =px=2|z=zlplyr=9| =5



Common probability distribution

* Several simple probability distributions are
useful in may contexts in machine learning
— Bernoulli over a single binary random variable
— Multinoulli distribution over a variable with £ states
— Gaussian distribution
— Mixture distribution




Mixture of Distribution
* A mixture distribution is made up of several
component distributions

* On each trial, the choice of which component
distribution generates the sample is determined by

sampling a component identity from a multinoulli
distribution:

P(x) = ZP(C = {)P(x | c =)

—where P(c) is a multinoulli distribution
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Gaussian mixture model

Components p(x|c=i) are Gaussian

Each component has a separately
parameterized mean pu® and covariance X®

Any smooth density can be approximated with
enough components

Samples from a GMM: . "‘b

— 3 components }

f.

‘ °




Quiz

A random variable, X, has the probability distribution table
as shown.

x 2[-1]0 [1 |2
P(X =2z) 040101

Assume that P(X = —2) = P(X = —1). Compute the expectation and variance of X.




Bayes’s rule

(Bayes' theorem (alternatively Bayes' law or Bayes'
rule), named after Thomas Bayes, describes
the probability of an event, based on prior knowledge
of conditions that might be related to the event.

dFor example, if the risk of health problems is known to
Increase with age, Bayes' theorem allows the risk to an
individual of a known age to be assessed more
accurately by conditioning it relative to their age.

P(ANB) P(A)=P(B|4)
P(B) P(B)

P(A|B) =



https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)

Quiz

Suppose that P(AN B) = 0.4 and P(B) =0.9. Find P(A|B).

4

Solution: 5

From the definition of conditional probability:

P(A|B) = “5g; = g5 = § = 0.4




Quiz

JA motor insurance company insures drivers in age group A,
B and C. 40% of the customers are in group A, 25% are in B,
and 35% are in group C. The company’s record shows that
each year, 2% of customers in age group A, 1% in group B
and 1.5% in group C made a claim. Given that a driver made
a claim, what is the probability that the driver is from age

group C?



