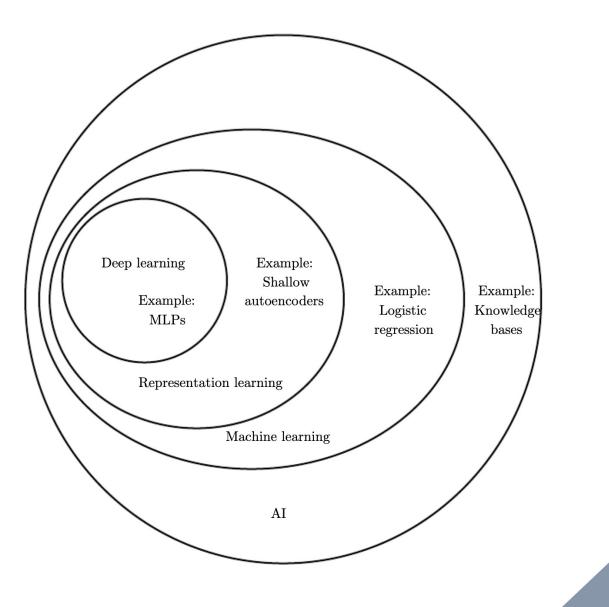


CSE 176 Introduction to Machine Learning Lecture 2: Linear Algebra, Probability and Statistics

Recap: Different Al systems



Recap: Major Types of machine learning

□Supervised learning: Given pairs of input-output, learn to map the input to output

□Image classification

□Speech recognition

□ Regression (continuous output)

Unsupervised learning: Given unlabeled data, uncover the underlying structure or distribution of the data

Clustering

Dimensionality reduction

□ Reinforcement learning: training an agent to make decisions within an environment to maximize a cumulative reward

Game playing (e.g., AlphaGo)

Robot control

Linear Algebra

Linear Algebra Topics

□Scalars, Vectors, Matrices and Tensors

Multiplying Matrices and Vectors

Identity and Inverse Matrices

Linear Dependence and Span

Norms

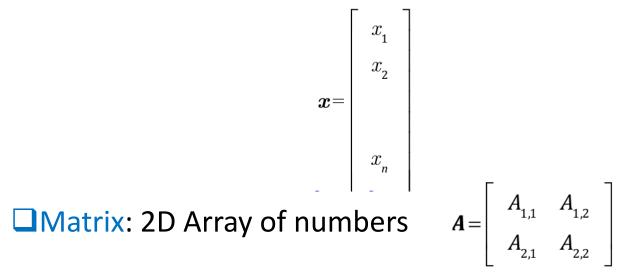
□Special kinds of matrices and vectors

- Eigen decomposition
- □Singular value decomposition

Scalar, Vector, Matrix, Tensor

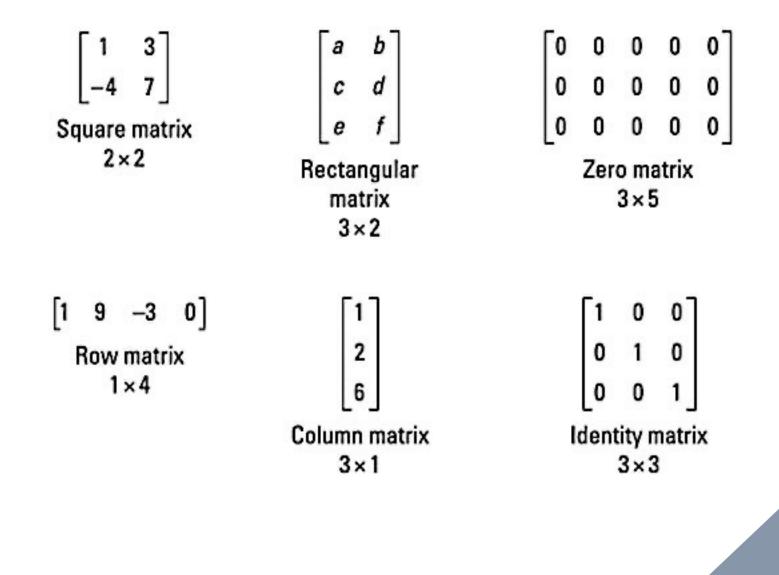
Scalar: A single number (real-valued or integer)

□Vector: An array of numbers arranged in order



Tensor: Sometimes need an array with more than two axes
E.g., an RGB color image has three axes

Types of matrices



Matrix times matrix

– If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Longrightarrow C_{i,j} = \sum_{k} A_{ik} B_{kj}$$

- Note that the standard product of two matrices is not just the product of two individual elements
 - Such a product does exist and is called the element-wise product or the Hadamard product AOB

Matrix times vector: Linear transformation

• *A***x**=**b**

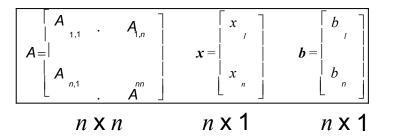
- where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{X}, \mathbf{b} \in \mathbb{R}^{n}$

- More explicitly $A_{II}x_1 + A_{I2}x_2 + \dots + A_{In}x_n = b_I$

 $A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$ $A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$ $A_{n1}x_1 + A_{m2}x_2 + \dots + A_{nn}x_n = b_n$

n equations in *n* unknowns

Slide from S.



Can view A as a *linear transformation* of vector x to vector b

• Sometimes we wish to solve for the unknowns $x = \{x_1, ..., x_n\}$ when *A* and *b* provide constraints

Matrix inverse

- Inverse of square matrix A defined as $A^{-1}A = I_n$
- We can now solve Ax = b as follows:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_n x = A^{-1}b$$

$$x = A^{-1}b$$

• This depends on being able to find A⁻¹

Matrix inverse

□For a 2x2 matrix:

$$A=egin{pmatrix} a&b\c&d \end{pmatrix}$$

The inverse is :

$$A^{-1} = rac{1}{ad-bc} egin{pmatrix} d & -b \ -c & a \end{pmatrix}$$

Quiz: find the inverse of AB^T

$$A = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Answer:
$$AB^{T} = \begin{bmatrix} 3 & -1 & 1 \\ 2 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 6 & 2 \end{bmatrix}$$

$$(AB^{T})^{-1} = \frac{1}{5 \cdot 2 - 0 \cdot 6} \cdot \begin{bmatrix} 2 & 0 \\ -6 & 5 \end{bmatrix} = \frac{1}{10} \cdot \begin{bmatrix} 2 & 0 \\ -6 & 5 \end{bmatrix} = \begin{bmatrix} 0.2 & 0 \\ -0.6 & 0.5 \end{bmatrix}$$

Norms

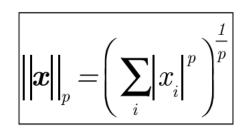
- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector x = [x₁,...,x_n]^T is distance from origin to x
 It is any function *f* that satisfies:

$$f(\boldsymbol{x}) = \boldsymbol{0} \Rightarrow \boldsymbol{x} = \boldsymbol{0}$$

$$f(\boldsymbol{x} + \boldsymbol{y}) \le f(\boldsymbol{x}) + f(\boldsymbol{y})$$
 Triangle Inequality
$$\forall \boldsymbol{\alpha} \in R \quad f(\boldsymbol{\alpha} \boldsymbol{x}) = |\boldsymbol{\alpha}| f(\boldsymbol{x})$$

L^p Norm

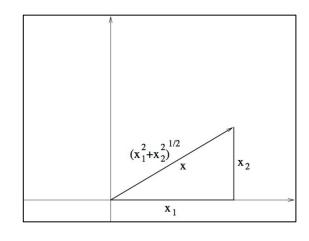
• Definition:



- $-L^2$ Norm
 - Called Euclidean norm
 - Simply the Euclidean distance
 between the origin and the point *x*
 - written simply as ||x||
 - Squared Euclidean norm is same as $\mathbf{x}^{\mathsf{T}}\mathbf{x}$
 - $-L^1$ Norm
 - Sum of absolute value for each x_i

$$\left\| \boldsymbol{x} \right\|_{\infty} = \max_{i} \left| \boldsymbol{x}_{i} \right|$$

Called max norm

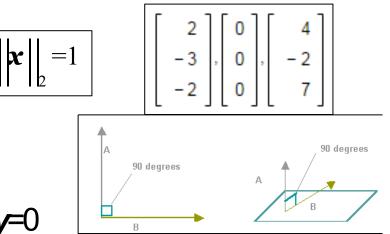


Slide from S.

Special kind of vectors

- Unit Vector
 - -A vector with unit norm
- Orthogonal Vectors
 - A vector *x* and a vector *y* are orthogonal to each other if *x^Ty=*0
 - Orthonormal Vectors
 - Vectors are orthogonal & have unit norm
 - Orthogonal Matrix
 - A square matrix whose rows are mutually
 - orthonormal: $A^T A = A A^T = I$

A-1**=A**^T



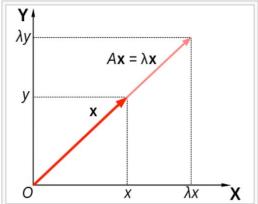
Eigenvector

 An eigenvector of a square matrix A is a non-zero vector v such that multiplication by A only changes the scale of v

Αν=λ**ν**

– The scalar λ is known as eigenvalue

 If v is an eigenvector of A, so is any rescaled vector sv. Moreover sv still has the same eigen value. Thus look for a unit eigenvector



Matrix *A* acts by stretching the vector \square *x*, not changing its direction, so *x* is an eigenvector of *A*.

Wikipedia

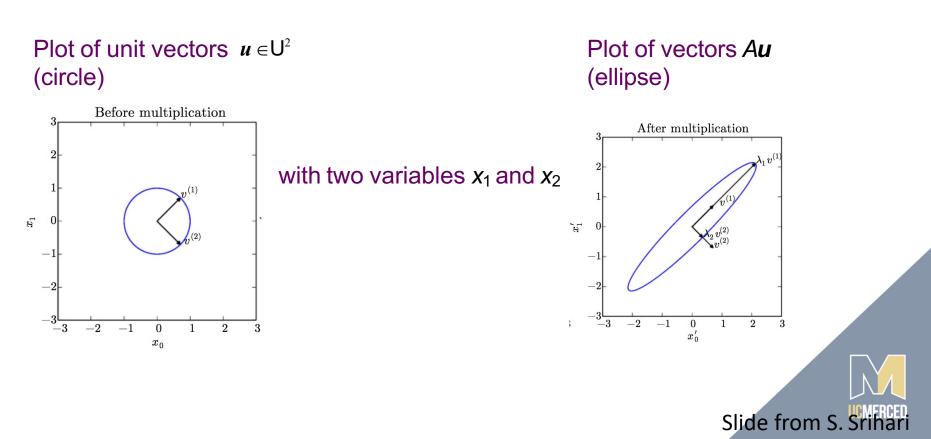
Eigendecomposition

- Suppose that matrix A has n linearly independent eigenvectors {v⁽¹⁾,...,v⁽ⁿ⁾} with eigenvalues {λ₁,...,λ_n}
- Concatenate eigenvectors to form matrix V
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1, ..., \lambda_n]$
- Eigendecomposition of A is given by

A=Vdiag(λ) V^{1}

Effect of eigenvalue and eigenvector

- Example of 2 × 2 matrix
- Matrix A with two orthonormal eigenvectors
 - – $V^{(1)}$ with eigenvalue λ_1 , $V^{(2)}$ with eigenvalue λ_2



Positive Semidefinite Matrix (PSD)

- A matrix whose eigenvalues are all positive is called *positive definite*
 - Positive or zero is called *positive semidefinite*
- If eigen values are all negative it is *negative definite*
 - Positive definite matrices guarantee that x^TAx≥0

Singular Value Decomposition (SVD)

- Eigendecomposition has form: A=Vdiag(λ)V⁻¹
 If A is not square, eigendecomposition is undefined
- SVD is a decomposition of the form A=UDV^T
- SVD is more general than eigendecomposition
 Used with any matrix rather than symmetric ones
 - Every real matrix has a SVD
 - Same is not true of eigen decomposition

Probability and Statistics

Random Variable

- Variable that can take different values randomly
- Scalar random variable denoted x
- Vector random variable is denoted in bold as
- Values of r.v.s denoted in italics x or **x**

- Values denoted as $Val(x) = \{x_1, x_2\}$

- Random variable must has a probability distribution to specify how likely the states are
- Random variables can be discrete or continuous
 - Discrete values need not be integers, can be named states
 - Continuous random variable is associated with a real value

Probability Distribution

A probability distribution is a description of how likely a random variable or a set of random variables is to take each of its possible states

The way to describe the distribution depends on whether it is discrete or continuous

Continuous Variables and PDFs

- When working with continuous variables, we describe probability distributions using probability density functions
- To be a pdf *p* must satisfy:
- The domain of p must be the set of all possible states of x.
- $\forall x \in x, p(x) \ge 0$. Note that we do not require $p(x) \le 1$.
- $\int p(x)dx = 1.$

Marginal distribution

□Sometimes we know the joint distribution of several variables

And we want to know the distribution over some of themIt can be computed using

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y)$$

$$p(x) = \int p(x, y) dy$$

Conditional probability

- We are often interested in the probability of an event given that some other event has happened
- This is called conditional probability
- It can be computed using

$$P(y = y | x = x) = \frac{P(y = y, x = x)}{P(x = x)}$$

Chain rule of conditional probability

 Any probability distribution over many variables can be decomposed into conditional distributions over only one variable

$$P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)} \mid \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)})$$

An example with three variables

$$P(\mathbf{a}, \mathbf{b}, \mathbf{c}) = P(\mathbf{a} \mid \mathbf{b}, \mathbf{c})P(\mathbf{b}, \mathbf{c})$$

$$P(\mathbf{b}, \mathbf{c}) = P(\mathbf{b} \mid \mathbf{c})P(\mathbf{c})$$

$$P(\mathbf{a}, \mathbf{b}, \mathbf{c}) = P(\mathbf{a} \mid \mathbf{b}, \mathbf{c})P(\mathbf{b} \mid \mathbf{c})P(\mathbf{c})$$

Independence and conditional independence

- Independence: $|x \perp y|$

 - Two variables x and y are independent if their probability distribution can be expressed as a product of two factors, one involving only x and the other involving only y

$$\forall x \in \mathbf{x}, y \in \mathbf{y}, \ p(\mathbf{x} = x, \mathbf{y} = y) = p(\mathbf{x} = x)p(\mathbf{y} = y)$$

- Conditional Independence: x⊥y
 - Two variables x and y are independent given variable z, if the conditional probability distribution over x. and y factorizes in this way for every z

 $\forall x \in \mathbf{x}, y \in \mathbf{y}, z \in \mathbf{z}, \ p(\mathbf{x} = x, \mathbf{y} = y \mid \mathbf{z} = z) = p(\mathbf{x} = x \mid \mathbf{z} = z)p(\mathbf{y} = y \mid \mathbf{z} = z)$

Common probability distribution

- Several simple probability distributions are useful in may contexts in machine learning
 - Bernoulli over a single binary random variable
 - Multinoulli distribution over a variable with k states
 - Gaussian distribution
 - Mixture distribution

Mixture of Distribution

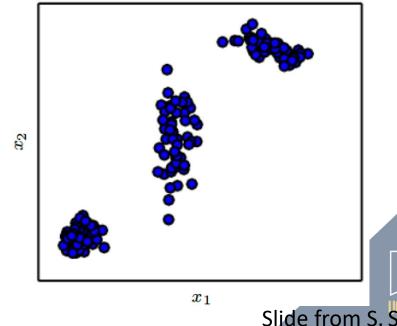
- A mixture distribution is made up of several component distributions
- On each trial, the choice of which component distribution generates the sample is determined by sampling a component identity from a multinoulli distribution:

$$P(\mathbf{x}) = \sum_{i} P(\mathbf{c} = i) P(\mathbf{x} \mid \mathbf{c} = i)$$

- where P(c) is a multinoulli distribution

Gaussian mixture model

- Components $p(\mathbf{x}|\mathbf{c}=i)$ are Gaussian
- Each component has a separately parameterized mean $\mu^{(i)}$ and covariance $\Sigma^{(i)}$
- Any smooth density can be approximated with enough components
- Samples from a GMM:
 - 3 components



Quiz

A random variable, X, has the probability distribution table as shown.

x	-2	-1	0	1	2
P(X = x)			0.4	0.1	0.1

Assume that P(X = -2) = P(X = -1). Compute the expectation and variance of X.

Bayes's rule

- □Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after <u>Thomas Bayes</u>, describes the <u>probability</u> of an <u>event</u>, based on prior knowledge of conditions that might be related to the event.
- □For example, if the risk of health problems is known to increase with age, Bayes' theorem allows the risk to an individual of a known age to be assessed more accurately by conditioning it relative to their age.

 $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) * P(B|A)}{P(B)}$

Quiz

Suppose that $P(A \cap B) = 0.4$ and P(B) = 0.9. Find P(A|B).

Solution: $\frac{4}{9}$

From the definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.4}{0.9} = \frac{4}{9} = 0.\overline{4}$$

Quiz

A motor insurance company insures drivers in age group A, B and C. 40% of the customers are in group A, 25% are in B, and 35% are in group C. The company's record shows that each year, 2% of customers in age group A, 1% in group B and 1.5% in group C made a claim. Given that a driver made a claim, what is the probability that the driver is from age group C?

