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CSE 176 Introduction to Machine Learning

Lecture 3: Supervised Learning: Classification and Regression

Some materials from Miguel Carreira-Perpifian and Olga Veksler



Recap: Linear Algebra Topics

AScalars, Vectors, Matrices and Tensors
JMultiplying Matrices and Vectors
dIdentity and Inverse Matrices
Linear Dependence and Span
dNorms

dSpecial kinds of matrices and vectors
(JEigen decomposition

Singular value decomposition




Recap: Matrix times matrix

— If 4 1s of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

C=AB=C,, =) AB,
k

— Note that the standard product of two matrices is
not just the product of two individual elements

» Such a product does exist and is called the element-wise
product or the Hadamard product 40 B




Recap: Matrix times vector: Linear transformation

e Ax=b
—where AcR™ and X, beR"
— More explicitly

Ao+ Apxy +o T A,x, = b,

Ayx;+ Apx, +.t Ayx, = b,

Appe;+ Appx, +..+ Apx, = by,

b
e
b
| b
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|_n
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nX

n equations in
n unknowns

Can view 4 as a linear transformation
of vector x to vector b




Recap: LP Norm

Definition:

1
el -S|
—[2Norm :

 Called Euclidean norm
— Simply the Euclidean distance 1
between the origin and the point x i~ S

2

— written simply as || x| | %
— Squared Euclidean norm is same as x'x

— L"Norm
« Sum of absolute value for each x;

afc‘zi‘ » Called max norm

A

— L= Norm HiBH =m
o0

Slj



Recap: Eigen decomposition

« Suppose that matrix Ahas n linearly
independent eigenvectors {v(),..,vin} with
eigenvalues {A4,..,\,}

« Concatenate eigenvectors to form matrix V
« Concatenate eigenvalues to form vector
A=[A1,..,\n]
» Eigendecomposition of Ais given by
A=Vdiag(») /'




Recap: Marginal distribution

dSometimes we know the joint distribution of several
variables

JANnd we want to know the distribution over some of them

It can be computed using

Y Ew Plr=%]= ZP(X =% ¥ =)
y

p(x) = /p(:r;,-y)dy




Recap: Conditional probability

« We are often interested in the probability of an event given
that some other event has happened

Py =y,x = z)

Ply=y|x=1z)= Plx=1)




Recap: Bayes’s rule

(Bayes' theorem (alternatively Bayes' law or Bayes'
rule), named after Thomas Bayes, describes
the probability of an event, based on prior knowledge
of conditions that might be related to the event.

P(ANB) P(A)=xP(B|4)
P(B) P(B)

P(A|B) =



https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)

Recap: Major Types of machine learning

[1Supervised learning: Given pairs of input-output, learn to
map the input to output
Llimage classification
OSpeech recognition
[IRegression (continuous output)

L1Unsupervised learning: Given unlabeled data, uncover the
underlying structure or distribution of the data
OClustering
[LIDimensionality reduction

[IReinforcement learning: training an agent to make decisions
within an environment to maximize a cumulative reward
LGame playing (e.g., AlphaGo)
[JRobot control



Today’s topic

dSupervised Learning
U Binary Classification
L Multi-class classification
(Regression

Problem definition and formulation




Example of Binary Classification

L1Fish classification - salmon or sea bass?
Llextract two features, fish length and fish brightness

feature x1 _ 3.3 x2 _ 6.3 x3 _ 2.3 x4 _ /6.4 — individual'
vector 5-7/ L8'7{J /L1 V4 | L7'OJ o f::tg;ezn:t%

and brightness

salmon sea bass salmon sea bass

y'=0 y*=1 y’=0  y*=1

Lly' is the output (label or target) for example x!




Example of Multi-class classification

[1Easy to collect images of digits with their correct labels

0 _— 07200000020

1 — nNRAANNONE

2 —_— 2| 2||A|R| L] 2| &||L]| 2>

3 — s BRREBIEEERBER ,
known 4 S AN A A A AL 1mage
labels 5 —s HENBEEHEEBRER data

6 — b o6 bbb o

7 e 7171777177212 ]2

8 _— & ¢ 278 ¢ 7818

9 _— 71223271999

LIML algorithm can use collected data to produce a program
for recognizing previously unseen images of digits

O—>O "f_>4

automatically automatically

produced label new Image produced label

new image



Example of Regression

Real world input Model Model Model Real world output
Input output
6000 square feet, "6000]
4 bedrooms, 4 Predicted price

previously sold for —> | 235 —> t—> [340}—> ) P

$235K in 2005, 2005 s 3340k

1 parking spot. |1 Supervised learning

model




Supervised ML

1 We are given
1. Training examples X4, X»,..., X,
labeled data
2. Target output for each sample y,, ¥,...., ¥,
[1 Training phase
- estimate function y = h(x) from labeled data

where h(x) is called classifier, learning machine, prediction function, efc.

[l Testing phase (deployment)
L1 predict output h(x) for a new (unseen) sample x




Training/Testing Phases lllustrated

Training
ﬁraining examples\ training
020000000 labels
AN NARANA A AN EARYN.
27 LaedL2> '
332 32B33NISIR

e s e feature . Learned
: ) m=) | Training
6|[6|[6][5][b|l[Z][b|e]€ vectors modelh

7171177172122
& ¢85 78 ¢ % 8¢
721?2/¢11/?/2/9]9]|9

N %

Testing

feature Learned
‘f ‘[ vector ]‘[ modeIhJ

test Image

label
prediction




Training phase as parameter estimation

Estimate prediction function y = h(x) from labeled data

Typically, search for h is limited to some type/group of
functions (“hypothesis space ) parameterized by weights w
that must be estimated

hy(x) or h(w,x)

Goal: find classifier parameters (weights) W so that h(w,x!) = y
“as much as possible” for all training examples,



Loss function

LI Training dataset of / pairs of input/output examples

{xn, yn}n]\i 1

LlLoss function or cost function measures how bad model is:

W' = argmin,, 2,L(y,, h(w,Xx,))

[10 is also a common notation for weights




Supervised ML algorithm

1. A model h(x; ®) (hypothesis class) with parameters ©®. A particular value of ® determines
a particular hypothesis in the class.
Ex: for linear models, ® = slope w; and intercept wo.

2. A loss function L(-,-) to compute the difference between the desired output (label) y,, and
our prediction to it h(x,; ®). Approzimation error (loss):

N
E(©;X) = Z L(y,, h(x,; ®)) = sum of errors over instances

n=1
Ex: 0/1 loss for classification, squared error for regression.

3. An optimization procedure (learning algorithm) to find parameters ®* that minimize the

error:
®©* = argmin E(O; X)
©




Example: 1D Linear regression

dModel:

y = flz, @]
= Qo + P17

JParameters

¢ _ [¢0] «— y-offset

¢1 <+«—— slope




Example: 1D Linear regression

dModel:

y = flz, @]
= Qo + P17

JParameters

¢ _ [¢0] «— y-offset

¢1 <+«—— slope




Example: 1D Linear regression training data

2.0
&
e © © ¢ Loss function:
O
> ® ;
5 — 2
210 %o Lig] =Y (flxi, ] — us)
5 ® i=1
@) '. 7
| = Z(% + g1z — Yi)”
i=1
T Y “Least squares loss function”

Input,




Example: 1D Linear regression training data

2.0

Loss, L =7.11
o OO ’. ? Loss function:
> T el il :
W R L — 2
210 ®e ¥ L|g] Z(f[aﬁz,qﬁ] Yi)
5 @ . T ¥ i=1
o |, L e I
B = > (60 -+ aw: — 1)
) S “Least squares loss function”

Input, x




Example: 1D Linear regression training data

2.0

Loss, . = 10.22

Loss function:

I
= (¢o+ ¢r1ai — i)’

1=1

“Least squares loss function”




Example: 1D Linear regression training data

2.0

Loss, L = 0.19

Loss function:

I

2
= (0 + b1 — ys)
i=1
T S “Least squares loss function”

Input, x




Example: 1D Linear regression loss function

Loss function:

= (¢o+ ¢r1ai — i)’

Q 2.0
Opn 0
g
» L, d)()
<, . nterce\) “«

Least squares loss function”




Example: 1D Linear regression loss function

20
20 Loss, L = 7.11 ’.
" o oo ©
? el i
-3
~0.4,00 7
b 0
1.0

Input,




Example: 1D Linear regression loss function

2.0

Loss, L. = 10.22




Example: 1D Linear regression loss function

2.0

Loss, L = 0.19




Example: 1D Linear regression loss function

0.0 1.0
Intercept, ¢g



Linear classifier example: perceptron

f(w,x)
)
X = label
weighted binary
sum decision

perceptron for binary classification of 2D feature vector




Linear Classifiers

bad w

W = (W,W1,W;)

better w

classification error 38%

projected points onto
normal line are all mixed-up

classification error 4%

projected points ont
normal line are well s



Underfitting

For some types of data
no linear decision boundary
can separate the samples well

 Classifier underfits the data if it can produce decision
boundaries that are too simple for this type of data

- chosen classifier type (hypothesis space) is not expressive eno



More complex (non-linear) classifiers

Xz\ﬂ oo %0 o
o

dfor example, if f(w,x) is a polynomial of high degree

dcan achieve 0% classification error



More complex (non-linear) classifiers

dThe goal is to classify well on new data

dTest “wiggly” classifier on new data: 25% error



Overfitting

O Amount of data for training is always limited

O Complex model often has too many parameters
to fit reliably to limited data

d Complex model may adapt too closely to “random noi
In training data, rather than look at a “big picture”




Overfitting: Extreme Example

JTwo class problem: face and non-face images

dMemorize (i.e. store) all the “face” images

JFor a new image, see if it is one of the stored faces

if yes, output “face” as the classification result

If no, output “non-face”

Jproblem:
Jzero error on stored data, 50% error on test (new) data

ddecision boundary is very irregular

JSuch learning is memorization without generalization

slide is modified ffom Y. LeCun



Generalization
training data new data

J Ability to produce correct outputs on previously unseen examples
is called generalization

1 Big question of learning theory: how to get good generalization
with a limited number of examples

 Intuitive idea: favor simpler classifiers

1 Simpler decision boundary may not fit ideally to training data
tends to generalize better to new data



Underfitting - Overfitting

underfitting “just right” overfitting

 high training error O low training error O low training error
O high test error O low test error O high test error




Model selection and generalization

dMachine learning problems (classification, regression and
others) are typically ill-posed : the observed data is finite
and does not uniquely determine the classification or
regression function.

(JHow to choose the right inductive bias, in particular the
right hypothesis class? This is the model selection problem.




Cross Validation

dTraining set:
Used to train, i.e., to fit a hypothesis h € H..

Optimize parameters of h given the model structure and
hyperparameters.

dUsually done with an optimization algorithm (the learning
algorithm).
 Validation set:
dUsed to minimize the generalization error.

L Optimize hyperparameters or model structure.

dUsually done with a “grid search”. Ex: try all values of H € {10, 50,
100} and A € {10-5, 10-3, 10-1}.

Test set:
dUsed to report the generalization error.
dWe optimize nothing on it, we just evaluate the final model on it



Cross Validation

1. For each class H,, fit its optimal hypothesis h. using the
training set.

2. Of all the optimal hypotheses, pick the one that is most
accurate in the validation set.

3. Report its error in the test set.




How to design ML algorithm?

JThe model class is large enough to contain a good
approximation to the underlying function that generated
the data in X.

dThe learning algorithm is efficient and accurate.

JWe must have sufficient training data to pinpoint the right
model




Gradient Descent

JExample: for a function of two variables

t L(Po, P1)

.........................................
-------------------------------------------
---------------
Taag
"uy
"y
L
L
0
‘e
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",
o

- §1

update equation for a point ¢ = [¢¢, P1]

¢'=¢ —aVl

Stop at a local minima where V. = 0



Example: 1D Linear regression training

0.0 1.0 20 00 10
Intercept, ¢ Input, =




Example: 1D Linear regression training

0.0 1.0 20 00 10
Intercept, ¢ Input, =




Example: 1D Linear regression training

0.0 1.0 20 00 10
Intercept, ¢ Input, =




Example: 1D Linear regression training

0.0 1.0 2.0
Intercept, ¢



Example: 1D Linear regression training

0.0 1.0 2.0
Intercept, ¢



Possible objections

dBut you can fit the line model in closed form!
dYes — but we won’t be able to do this for more complex models

(JBut we could exhaustively try every slope and intercept
combo!

dYes — but we won’t be able to do this when there are a million
parameters
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