

CSE 176 Introduction to Machine Learning

Lecture 3: Supervised Learning: Classification and Regression

Recap: Linear Algebra Topics

- ☐ Scalars, Vectors, Matrices and Tensors
- ☐ Multiplying Matrices and Vectors
- ☐ Identity and Inverse Matrices
- ☐ Linear Dependence and Span
- □ Norms
- ☐ Special kinds of matrices and vectors
- ☐ Eigen decomposition
- ☐ Singular value decomposition

Recap: Matrix times matrix

 If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Rightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

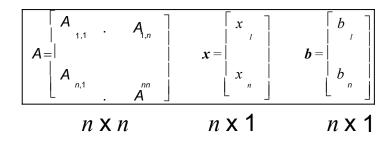
- Note that the standard product of two matrices is not just the product of two individual elements
 - Such a product does exist and is called the element-wise product or the Hadamard product AOB

Recap: Matrix times vector: Linear transformation

- Ax=b
 - where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{X}, \mathbf{b} \in \mathbb{R}^n$

- More explicitly
$$A_{1l}x_1 + A_{12}x_2 + + A_{ln}x_n = b_1$$
$$A_{2l}x_1 + A_{22}x_2 + + A_{2n}x_n = b_2$$
$$A_{nl}x_1 + A_{m2}x_2 + + A_{nn}x_n = b_n$$

n equations in n unknowns



Can view *A* as a *linear transformation* of vector *x* to vector *b*

Recap: L^p Norm

Definition:

$$\left|\left|\left|\boldsymbol{x}\right|\right|_{p} = \left(\sum_{i} \left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\right|$$

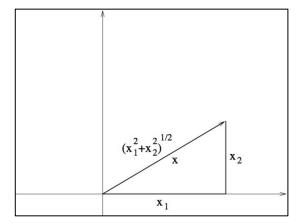
$-L^2$ Norm

- Called Euclidean norm
 - Simply the Euclidean distance
 between the origin and the point x
 - written simply as ||x||
 - Squared Euclidean norm is same as $\mathbf{x}^\mathsf{T}\mathbf{x}$

Sum of absolute value for each x_i

$$\boxed{\left|\left|\boldsymbol{x}\right|\right|_{\infty} = \max_{i} \left|x_{i}\right|}$$

Called max norm



Recap: Eigen decomposition

- Suppose that matrix A has n linearly independent eigenvectors $\{v^{(1)},...,v^{(n)}\}$ with eigenvalues $\{\lambda_1,...,\lambda_n\}$
- Concatenate eigenvectors to form matrix V
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1,...,\lambda_n]$
- Eigendecomposition of A is given by
 A=Vdiag(λ)V¹

Recap: Marginal distribution

- ☐Sometimes we know the joint distribution of several variables
- ☐And we want to know the distribution over some of them
- ☐ It can be computed using

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y)$$

$$p(x) = \int p(x, y) dy$$

Recap: Conditional probability

 We are often interested in the probability of an event given that some other event has happened

$$P(y = y \mid x = x) = \frac{P(y = y, x = x)}{P(x = x)}$$

Recap: Bayes's rule

□Bayes' theorem (alternatively Bayes' law or Bayes' rule), named after Thomas Bayes, describes the probability of an event, based on prior knowledge of conditions that might be related to the event.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) * P(B|A)}{P(B)}$$

Recap: Major Types of machine learning

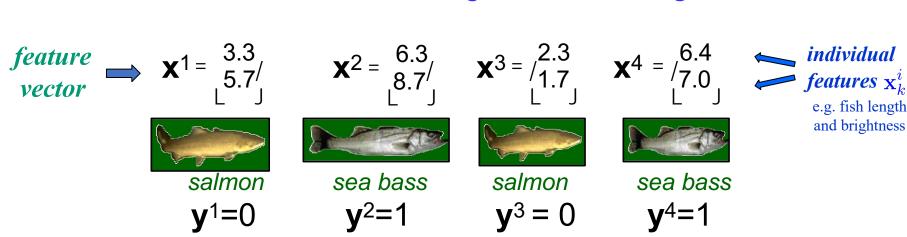
☐Supervised learning: Given pairs of input-output, learn to
map the input to output
□Image classification
☐Speech recognition
□Regression (continuous output)
□Unsupervised learning: Given unlabeled data, uncover the underlying structure or distribution of the data □Clustering □Dimensionality reduction
□Reinforcement learning: training an agent to make decisions within an environment to maximize a cumulative reward □Game playing (e.g., AlphaGo)
□Robot control

Today's topic

- ☐Supervised Learning
 - ☐ Binary Classification
 - ☐ Multi-class classification
 - **□**Regression
- ☐ Problem definition and formulation

Example of Binary Classification

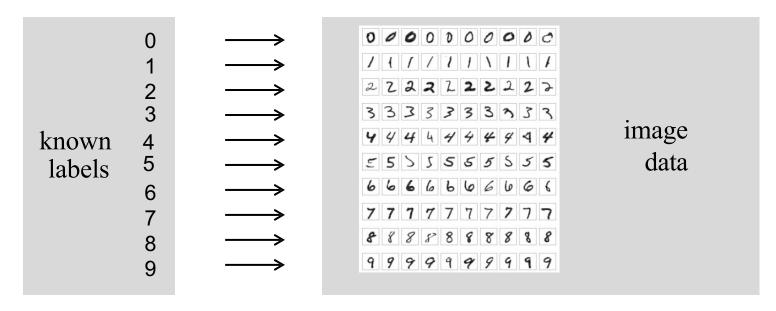
- □Fish classification *salmon* or *sea bass*?
- □extract two features, *fish length* and *fish brightness*



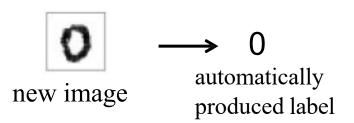
 $\Box y^i$ is the output (label or target) for example x^i

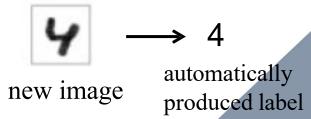
Example of Multi-class classification

□Easy to collect images of digits with their correct labels

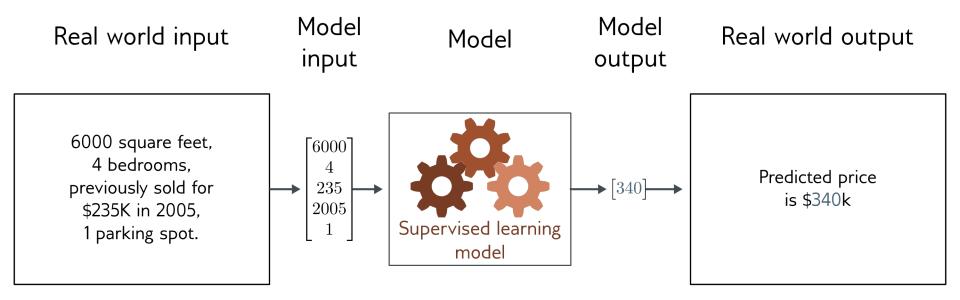


☐ML algorithm can use collected data to produce a program for recognizing previously unseen images of digits





Example of Regression



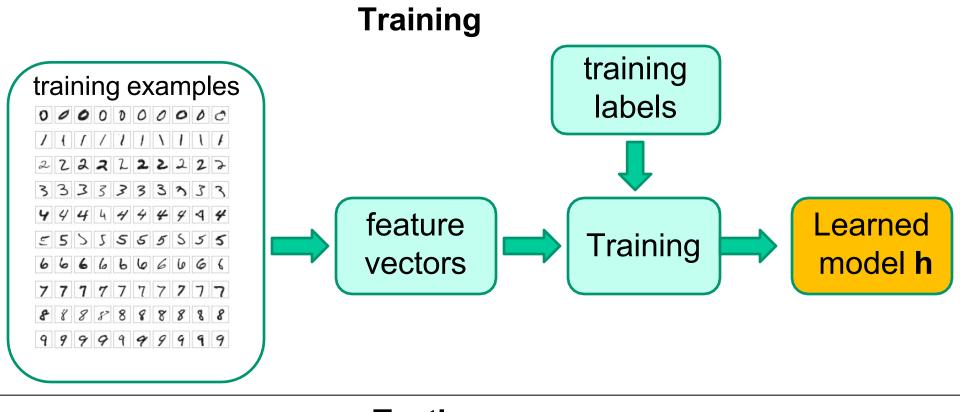
Supervised ML

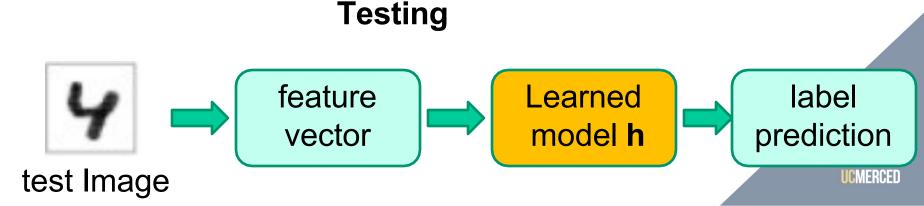
- ☐ We are given

 - Training examples x₁, x₂,..., x_n
 Target output for each sample y₁, y₂,..., y_n

- ☐ Training phase
 - estimate function y = h(x) from labeled data where $\mathbf{h}(\mathbf{x})$ is called *classifier*, *learning machine*, *prediction function*, etc.
- **Testing phase** (deployment)
 - \square predict output h(x) for a new (unseen) sample x

Training/Testing Phases Illustrated





Training phase as parameter estimation

 \square Estimate prediction function y = h(x) from labeled data

Typically, search for h is limited to some type/group of functions ("hypothesis space") parameterized by weights w that must be estimated

$$h_{W}(x)$$
 or $h(w, x)$

$$(w = ?)$$

Goal: find classifier parameters (weights) w so that $h(w, x^i) = y^i$ "as much as possible" for all training examples,

Loss function

□Training dataset of *I* pairs of input/output examples

$$\{{\bf x}_n,\,{\bf y}_n\}_{n=1}^N$$

□Loss function or cost function measures how bad model is:

$$\mathbf{w}^* = \operatorname{arg\,min}_{\mathbf{w}} \Sigma_{\mathbf{n}} L(\mathbf{y}_{\mathbf{n}}, \mathbf{h}(\mathbf{w}, \mathbf{x}_{\mathbf{n}}))$$

 $\square \Theta$ is also a common notation for weights

Supervised ML algorithm

1. A model $h(\mathbf{x}; \boldsymbol{\Theta})$ (hypothesis class) with parameters $\boldsymbol{\Theta}$. A particular value of $\boldsymbol{\Theta}$ determines a particular hypothesis in the class.

Ex: for linear models, $\Theta = \text{slope } w_1$ and intercept w_0 .

2. A loss function $L(\cdot, \cdot)$ to compute the difference between the desired output (label) y_n and our prediction to it $h(\mathbf{x}_n; \boldsymbol{\Theta})$. Approximation error (loss):

$$E(\boldsymbol{\Theta}; \mathcal{X}) = \sum_{n=1}^{N} L(y_n, h(\mathbf{x}_n; \boldsymbol{\Theta})) = \text{sum of errors over instances}$$

Ex: 0/1 loss for classification, squared error for regression.

3. An optimization procedure (learning algorithm) to find parameters Θ^* that minimize the error:

$$\mathbf{\Theta}^* = \arg\min_{\mathbf{\Theta}} E(\mathbf{\Theta}; \mathcal{X})$$

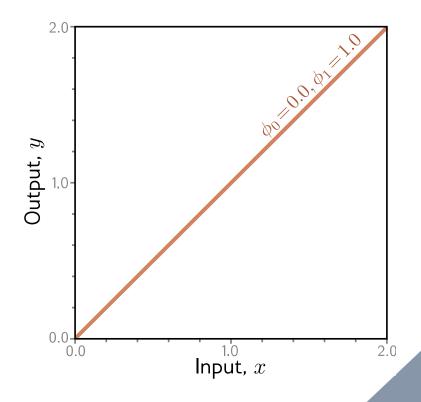
Example: 1D Linear regression

☐Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

■Parameters

$$\phi = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix}$$
 — y-offset slope

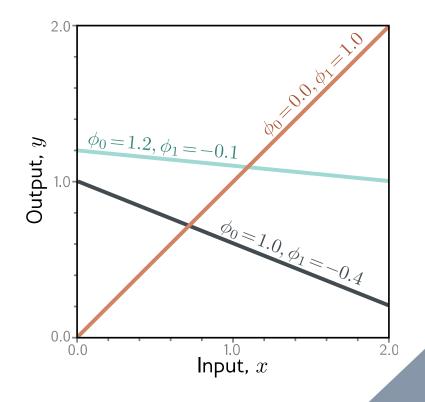


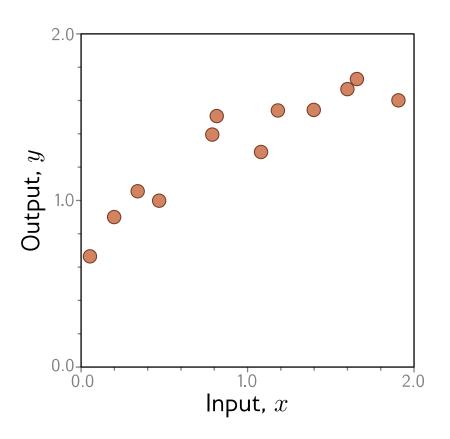
Example: 1D Linear regression

☐Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

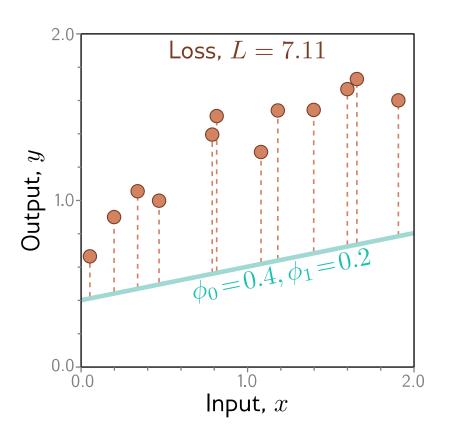
■Parameters





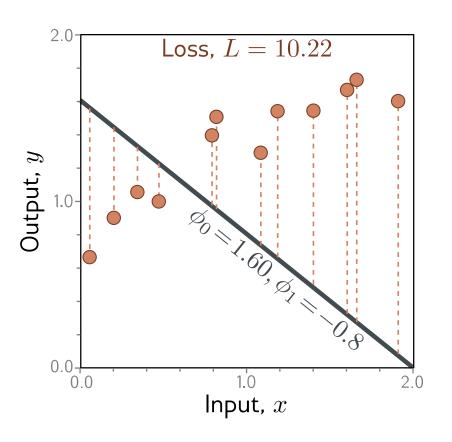
Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$



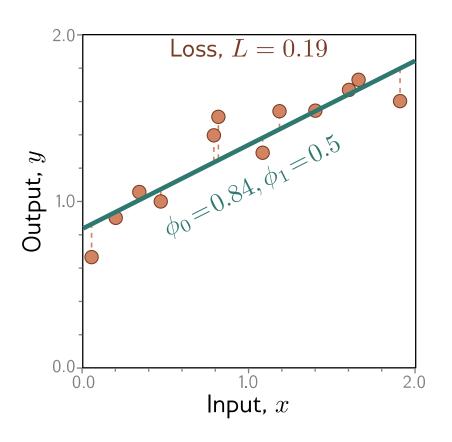
Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$



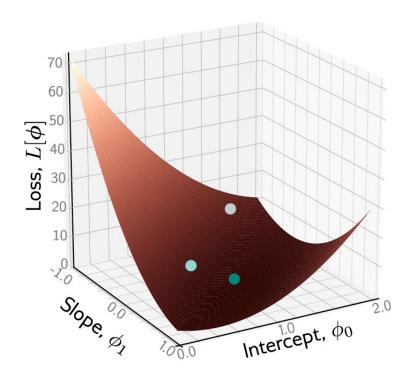
Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$



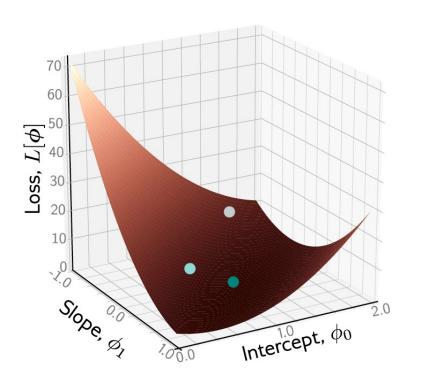
Loss function:

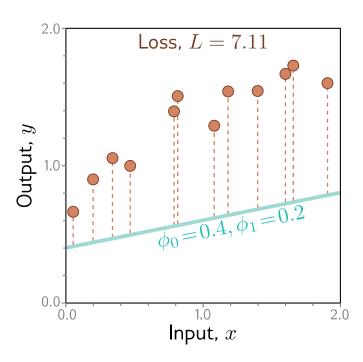
$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

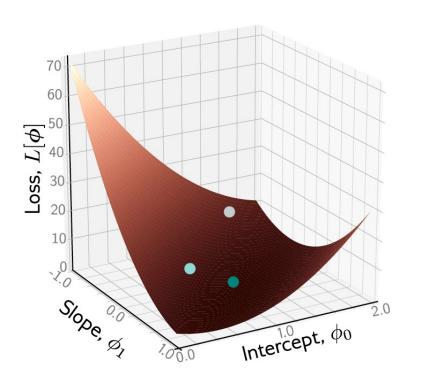


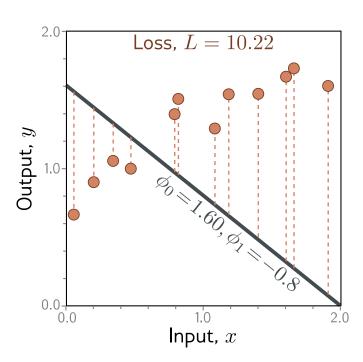
Loss function:

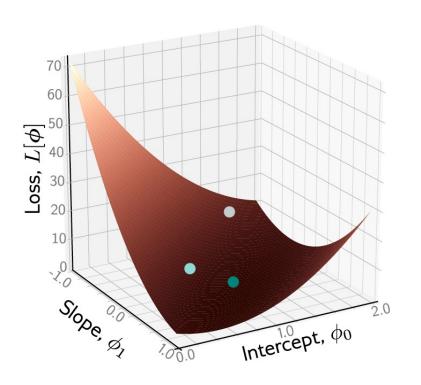
$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

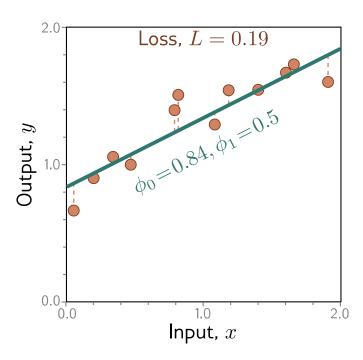


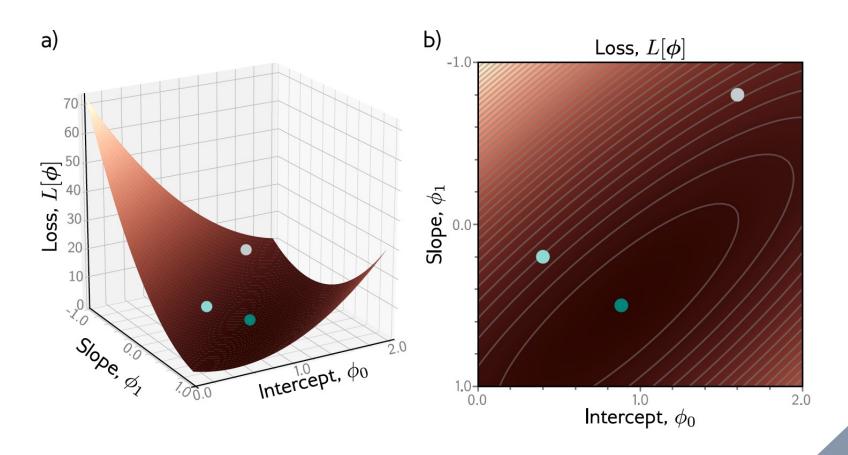




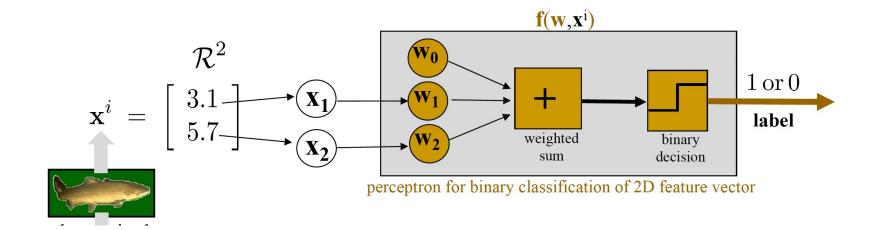






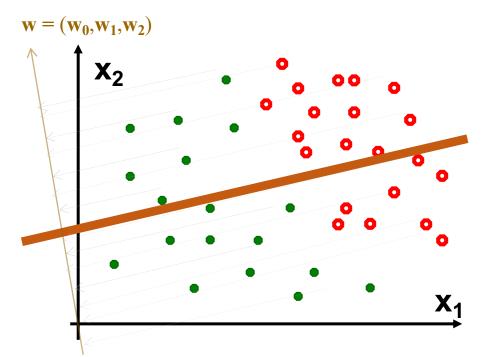


Linear classifier example: perceptron



Linear Classifiers

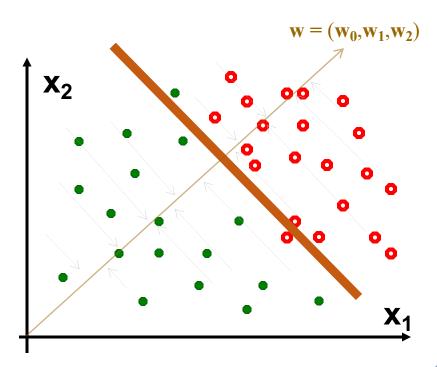
bad w



classification error 38%

projected points onto normal line are all mixed-up

better w

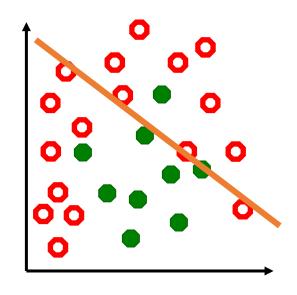


classification error 4%

projected points onto normal line are well separated UCMERCED

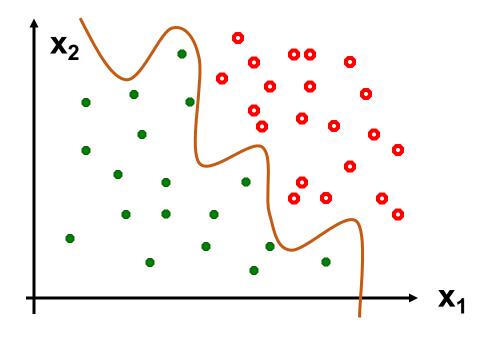
Underfitting

For some types of data no linear decision boundary can separate the samples well



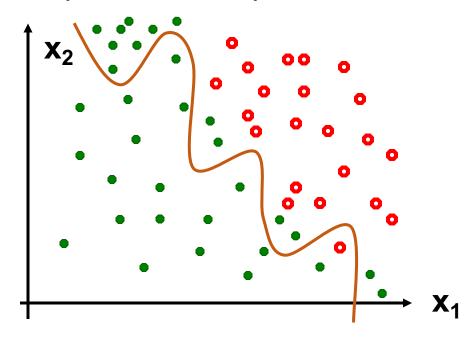
- ☐ Classifier underfits the data if it can produce decision boundaries that are too simple for this type of data
 - chosen classifier type (hypothesis space) is not expressive enough

More complex (non-linear) classifiers



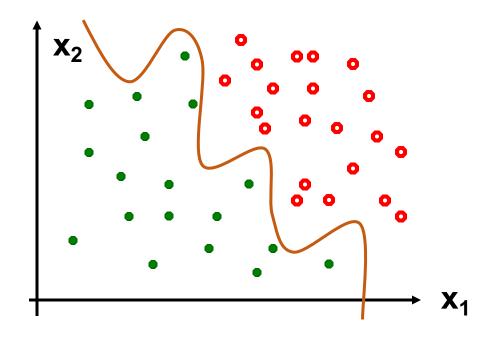
- \square for example, if f(w,x) is a polynomial of high degree
- □can achieve 0% classification error

More complex (non-linear) classifiers



- ☐ The goal is to classify well on new data
- ☐ Test "wiggly" classifier on new data: 25% error

Overfitting



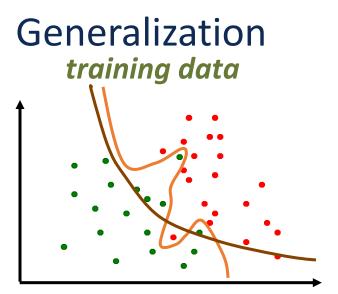
- □ Amount of data for training is always limited
- □ Complex model often has too many parameters to fit reliably to limited data
- ☐ Complex model may adapt too closely to "random noise" in training data, rather than look at a "big picture"

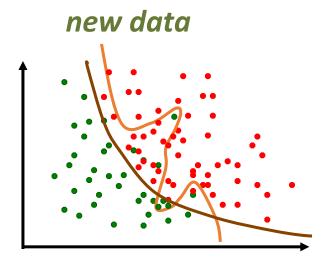
Overfitting: Extreme Example

- ☐ Two class problem: face and non-face images
- ☐ Memorize (i.e. store) all the "face" images
- ☐ For a new image, see if it is one of the stored faces
 - ☐ if yes, output "face" as the classification result
 - ☐ If no, output "non-face"

problem:

- □zero error on stored data, 50% error on test (new) data
- □decision boundary is very irregular
- ☐ Such learning is memorization without generalization

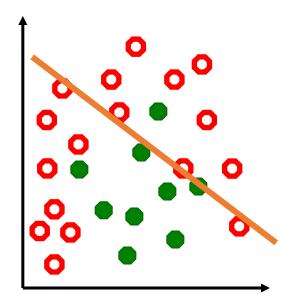




- ☐ Ability to produce correct outputs on previously unseen examples is called **generalization**
- ☐ Big question of learning theory: how to get good generalization with a limited number of examples
- ☐ Intuitive idea: **favor simpler classifiers**
- ☐ Simpler decision boundary may not fit ideally to training data but tends to generalize better to new data

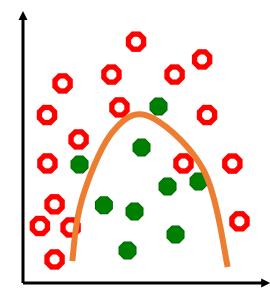
Underfitting → Overfitting

underfitting



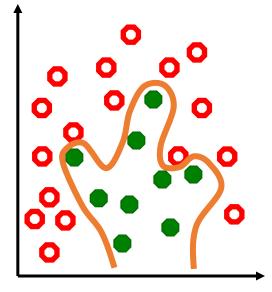
- high training error
- ☐ high test error

"just right"



- ☐ low training error
- ☐ low test error

overfitting



- ☐ low training error
- ☐ high test error

Model selection and generalization

- ☐ Machine learning problems (classification, regression and others) are typically ill-posed: the observed data is finite and does not uniquely determine the classification or regression function.
- ☐ How to choose the right inductive bias, in particular the right hypothesis class? This is the *model selection* problem.

Cross Validation

☐Training set:
\square Used to train, i.e., to fit a hypothesis $h \in H_i$.
Optimize parameters of h given the model structure and hyperparameters.
Usually done with an optimization algorithm (the learning algorithm).
☐ Validation set:
$oldsymbol{\square}$ Used to minimize the generalization error.
☐Optimize hyperparameters or model structure.
□Usually done with a "grid search". Ex: try all values of H ∈ {10, 50, 100} and λ ∈ {10–5, 10–3, 10–1}.
☐Test set:
☐ Used to report the generalization error.☐ We optimize nothing on it, we just evaluate the final model on it ☐
= 110 optimize from ing off to, we just evaluate the final model of it

Cross Validation

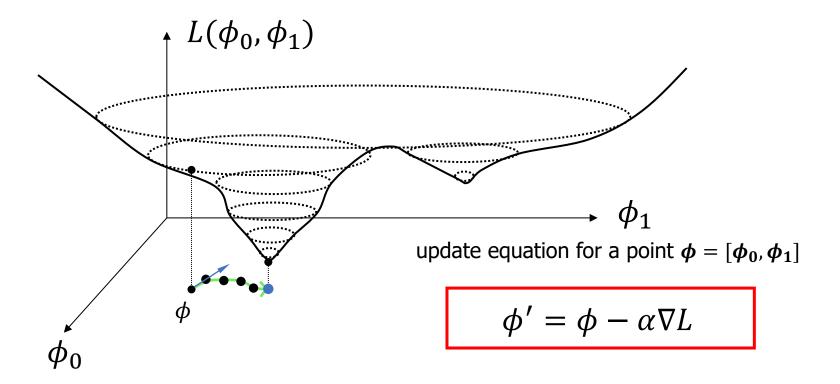
- 1. For each class H_i, fit its optimal hypothesis h_i using the training set.
- 2. Of all the optimal hypotheses, pick the one that is most accurate in the validation set.
- 3. Report its error in the test set.

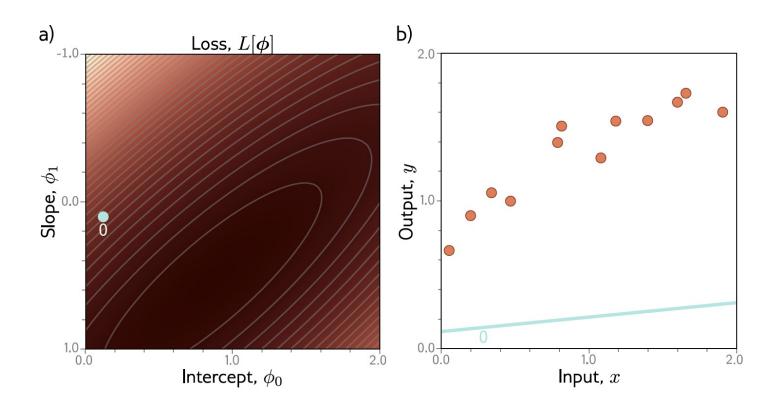
How to design ML algorithm?

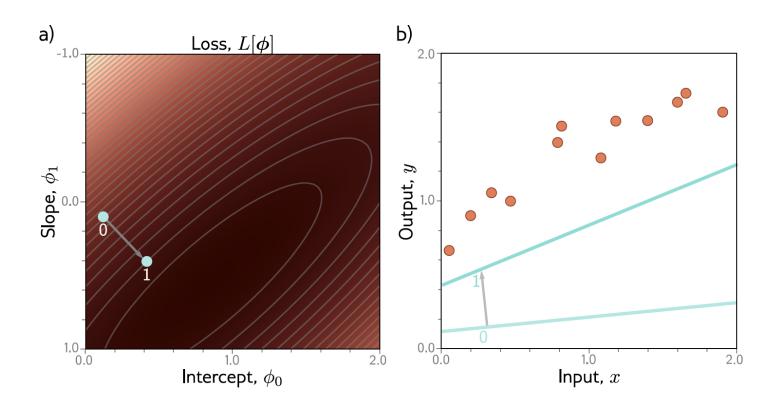
- ☐ The model class is large enough to contain a good approximation to the underlying function that generated the data in X.
- ☐ The learning algorithm is efficient and accurate.
- ☐We must have sufficient training data to pinpoint the right model

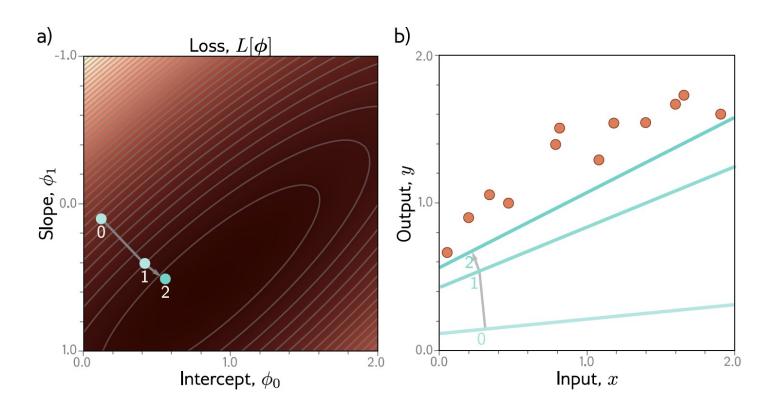
Gradient Descent

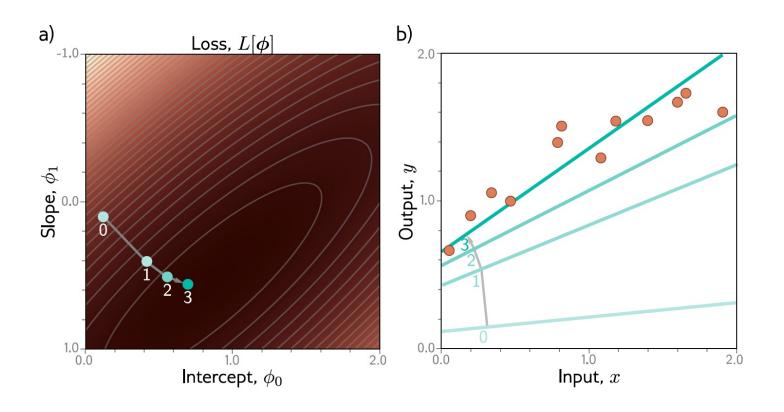
☐ Example: for a function of two variables

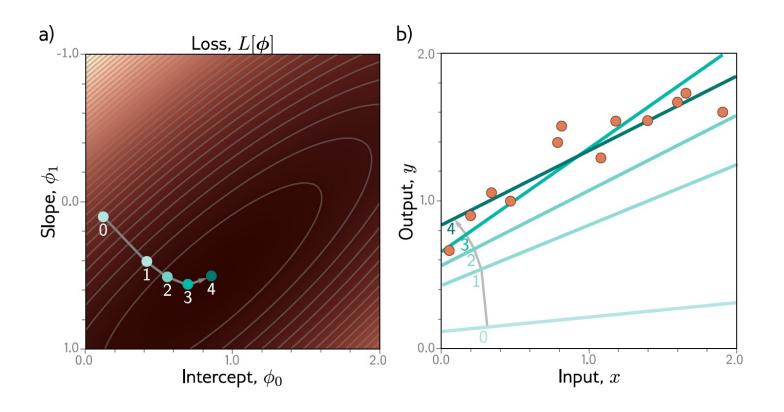












Possible objections

- ☐But you can fit the line model in closed form!
 - ☐Yes but we won't be able to do this for more complex models
- ☐But we could exhaustively try every slope and intercept combo!
 - ☐Yes but we won't be able to do this when there are a million parameters

