UCMERCED

CSE 176 Introduction to Machine Learning

Lecture 4: KNN Classifier and Curse of Dimensionality

Some materials from Pascal Poupart and Kilian Weinberger



Recap: Supervised ML algorithm

1. A model h(x; ®) (hypothesis class) with parameters ©®. A particular value of ® determines
a particular hypothesis in the class.
Ex: for linear models, ® = slope w; and intercept wo.

2. A loss function L(-,-) to compute the difference between the desired output (label) y,, and
our prediction to it h(x,; ®). Approzimation error (loss):

N
E(©;X) = Z L(y,, h(x,; ®)) = sum of errors over instances

n=1
Ex: 0/1 loss for classification, squared error for regression.

3. An optimization procedure (learning algorithm) to find parameters ®* that minimize the

error:
®©* = argmin E(O; X)
©




Recap: Training/Testing Phases lllustrated
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Quiz

Which of the following leads to low training error but high testing error?

underfitting “just right” overfitting




Recap: Cross Validation

dTraining set:
Used to train, i.e., to fit a hypothesis h € H..

Optimize parameters of h given the model structure and
hyperparameters.

dUsually done with an optimization algorithm (the learning
algorithm).
 Validation set:
dUsed to minimize the generalization error.
L Optimize hyperparameters or model structure.
dUsually done with a “grid search”. Ex: try all values of H € {10, 50,
100} and A € {10-5, 10-3, 10-1}.
Test set:
dUsed to report the generalization error.
dWe optimize nothing on it, we just evaluate the final model on it



Today’s topoic

K Nearest Neighbor Classifier

dCurse of Dimensionality
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K Nearest Neighbor Classifier



Nearest neighbor classification

Classification function: h(x) =y,
where y_ . is the label associated with the nearest neighbor

X, =argmin, d(x,x’)




How to measure distances?
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JQuiz: What if p=1, 2, or +o°?

JMetric learning (more to come)

LP norm
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Voronoi Diagram

dPartition implied by nearest neighbor

JAssuming Euclidian distance




K nearest neighbor algorithm

(UNearest neighbor often instable (noise)

JFor a test input x, assign the most common label amongst
its k most similar training inputs




Effect of K

JWhich partition do you prefer? Why?
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K controls the degree of smoothing.
dWhat if K=N(number of data points)?




Choosing K

(JHow should we choose K?
Select K with highest test accuracy

dCan we simply split to training and testing set?

dSolution: split data into training, validation and test sets
UTraining set: compute nearest neighbour
dValidation set: optimize hyperparameters such as K
Test set: measure performance




Choosing K based on validation set

Let k be the number of neighbours
For k = 1to max # of neighbours

accuracyy < eval(k, trainingData, validationData)
k* « argmaxy accuracyy

accuracy < eval(k”, trainingData U validationData, testData)
Return k*, accuracy

eval(k, trainingData, dataset)
error < (
For each (x, y) € dataset
Find {x4, x5, ..., x| (xi, ¥;) € trainingData} closest to x

*

y €< mOde({yli Y2, r}’k})
if y # y* then error, « error, + 1
|dataset|—error

|dataset|
return accuracy

accuracy <




Robust Validation

(JHow can we ensure that validation accuracy is
representative of future accuracy?

dValidation accuracy becomes more reliable as we increase
the size of the validation set

JHowever, this reduces the amount of data left for training

JPopular solution: cross-validation




Cross Validation

(JRepeatedly split training data in two parts, one for training
and one for validation. Report the average validation
accuracy.

k-fold cross validation




Weighted K Nearest Neighbor

= We can often improve K-nearest neighbours by weighting each
neighbour based on some distance measure

1
distance(x,x")

w(x,x') «

» Label y, < argmax, Z{xllxleknn(x)Ay:yx,}w(x,x')

where knn(x) is the set of K nearest neighbours of x




K Nearest Neighbor for Regression

We can also use KNN for regression

Let vy, be a real value instead of a categorical label

K-nearest neighbour regression:
v, < average({y,|x' € knn(x)})

Weighted K-nearest neighbour regression:
z:x’eknn(x) w(x, x’)Yx'

Zx’eknn(x) w(x,x’)

Vo
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Curse of Dimensionality



KNN for high-dimensional data

(Can we use KNN classifier for high-dimensional data?

JAssumption for KNN classifier to work:
K nearest neighbors are nearby

JAre K nearest neighbors nearby for d>>07?




KNN for high-dimensional data

dFormally, imagine the unit cube. All training
data is sampled uniformly within this cube

dWe are considering the k=10 nearest neighbors
of such a test point.

___________________

_________________

dLet € be the edge length of the smallest hyper-
cube that contains all k-nearest neighbors



KNN for high-dimensional data

l

1/d
Then ¢4 ~ £ and ¢ ~ (%) . If n = 1000, how big is £?

3

d /4
2 || 0.1

10 || 0.63
100 |[ 0.955
1000((0.9954




Curse of Dimensionality

dFor large dimension, all distances concentrate within a very
small range
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Data with low dimensional structure

(A Data often lie in sub-space or sub-manifold




Low-dimensional structure of face images
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