
CSE 176 Introduction to Machine Learning
Lecture 5: K-means and K-modes Clustering

Some materials from Yuri Boykov



Recap: K nearest neighbor algorithm

❑Nearest neighbor often instable (noise)

❑For a test input x, assign the most common label amongst 
its k most similar training inputs



Recap: Choosing K

❑How should we choose K?
❑Select K with highest test accuracy

❑Split data into training, validation and test sets
❑Training set: compute nearest neighbour

❑Validation set: optimize hyperparameters such as K

❑Test set: measure performance



General Grouping or Clustering

• Have data points (samples, a.k.a. feature vectors, examples, etc. )  f1,…, fp ,…

• Cluster similar points into groups

• points are not  pre-labeled

• think of clustering as ‘discovering’ labels 

horror movies

documentaries

sci-fi movies

slides from Olga Veksler



Data Clustering

Example: break data points (e.g. RGB or RGBXY space) into a few clusters

R G

B
?

decision boundaries for ND features  
could be arbitrarily complex (surfaces)



Clustering methods

❑K-means

❑Distortion clustering

❑Probabilistic clustering, EM, GMM 

❑Parametric vs non-parametric formulations

❑Kernel and spectral methods

❑Graph clustering

❑Mean-shift



Topics today

❑K-means clustering

❑K-modes clustering



K-means Algorithm (Lloyd’s, 1957)



K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly (e.g. from data points)
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K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means 

2. re-assign each sample to the closest mean
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K-means Objective



K-means objective

K  subsets of   

input

output

features



K-means objective

=),( SE + +

(SSD)
: extra parameters (means)



Squared distance as log-likelihood

single Gaussian

single Gaussian of fixed covariance
Assume K=2,



K-means as variance clustering criteria
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K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each sample to the closest mean

• Iterate until clusters stop changing

block-coordinate descent:  step 1 optimizes {µk} for fixed {Sk},  step 2 optimizes {Sk} for fixed {µk} 
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Lloyd’s algorithm (1957)

• Each step decreases the value of the objective function
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optimization variables



K-means: Approximate Optimization
• K-means is fast and (sometimes) works well in practice

• But can get stuck in a local minimum of objective EK
• not surprising, since the exact optimization of its objective is NP-hard

converged to local min

initialization

global minimum



μ1μ2

In this case K-means (K=2) implicitly finds a good 
threshold (between 2 clusters) 

T

K-means clustering examples:

Segmentation

here K-means finds 
compact clusters 

of pixels’ intensities



k = 3

k = 10k = 5

K-means for colors (RGB features):

Segmentation?

(mean color is used to show each segment/cluster)



Apply K-means to RGBXY features

K-means clustering examples:

Superpixels

[SLIC superpixels, Achanta et al., PAMI 2011]



K-means Properties

• Works best when clusters are spherical  (blob like)

• Fails for non-compact clusters 

K-means produces linear decision boundaries between features  fp  (why?) 

Thus, K-means does not work if two clusters can not be separated 

by a line/plane,   i.e. if the data is linearly non-separable. 

?

OK



K-means Properties

• Sensitive to outliers

Interestingly, in this case the optimal value of       is the “median” of set        instead of its “mean”

Explanation: squared distance error grows too fast making any outlier extremely costly.

This also explains non-robustness  of a “sample mean”  statistic.
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Possible solution: replace squared distances by absolute distances

that grow at a slower pace.
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Not so good

• Only a local minimum is found   (sensitive to initialization)

• May fail for non-blob like clusters    

• Maybe sensitive to outliers

• How to choose K ?

K-means Summary

Good

• Principled (objective function) approach to clustering

• Simple to implement (the approximate iterative optimization)

• Fast

Can add sparsity/complexity term 
making K  an additional variable 

Akaike Information Criterion (AIC)  or
Bayesian Information Criterion (BIC) 



NOTE: besides changing the distortion measure, there are different generalizations of K-means 

            requiring other interpretations of SSE objective

can use different “distortion” measures

(generalization) 

Distortion Clustering

K-modes

K-means

K-medians

squared
L2 norm

absolute
L2 norm

interpretation of parameters  μkexamples of distortion measure d|||| 



K-modes clustering



From “means” towards “modes” clustering:

Kernel-based mode clustering

Formulate clustering as histogram partitioning

• look for modes in data histograms

• assign points to modes

data points data histogram and its modes clustering



Finding Modes in a Histogram

How Many Modes Are There?

• Easy to see, not too obvious how to compute



Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

1. Initialize random seed, and fixed window

2. Calculate center of gravity ‘x’ of the window (the“mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence
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Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

img005

http://www.caip.rutgers.edu/~comanici/clusterDemo.html


Mean Shift as K-modes
[Salah, Mitche, Ben-Ayed 2010]

img005

Mean-shift segmentation relates to 
distortion clustering with a bounded loss (K-modes)
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Mean-shift results 

for segmentation
RGB+XY clustering
[Comaniciu & Meer 2002]



Mean-shift results 

for segmentation
RGB+XY clustering
[Comaniciu & Meer 2002]



RGB+XY clustering
[Comaniciu & Meer 2002]

Mean-shift results 

for segmentation

works well for

segments with 
near-consistent color 



What have we learned today

K-means clustering

K-modes clustering via mean-shift
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