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CSE 176 Introduction to Machine Learning

Lecture 5: K-means and K-modes Clustering

Some materials from Yuri Boykov



Recap: K nearest neighbor algorithm

(A Nearest neighbor often instable (noise)

JFor a test input x, assigh the most common label amongst
its k most similar training inputs




Recap: Choosing K

dHow should we choose K?
Select K with highest test accuracy

Split data into training, validation and test sets
Training set: compute nearest neighbour

dValidation set: optimize hyperparameters such as K
Test set: measure performance




General Grouping or Clustering

e Have data points (samples, a.k.a. feature vectors, examples, etc. ) f,.... f, ...

e Cluster similar points into groups

e points are not pre-labeled
e think of clustering as ‘discovering’ labels

horror movies
sci-fi movies

documentaries

slides from Olga Veksler



Data Clustering

decision boundaries for ND features
could be arbitrarily complex (surfaces)
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Example: break data points (e.g. RGB or RGBXY space) into a few clusters



Clustering methods

dK-means

(Distortion clustering

dProbabilistic clustering, EM, GMM
(dParametric vs non-parametric formulations
dKernel and spectral methods

AGraph clustering

dMean-shift




Topics today

dK-means clustering

JK-modes clustering
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K-means Algorithm (Lloyd’s, 1957)



K-means Clustering: Algorithm

e |nitialization step o

1.  pick K cluster centers randomly (e.g. from data points)
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K-means Clustering: Algorithm

e |nitialization step
1. pick K cluster centers randomly
2.  assign each sample to its closest center
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K-means Clustering: Algorithm

e |nitialization step ()
1. pick K cluster centers randomly ° (o)
2.  assign each sample to its closest center o (o)

e |teration steps

_ _1
1. compute centers as cluster means L = 1SK] z : fp

2.  re-assign each sample to the closest mean pes”
. Iterate until clusters stop changing
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K-means Objective



K-means objective

features

82
Sl
. (lpeQ}
. q3 K subsets of Q)

S={S',...,8K}  output

N,




K-means objective

[ : extra parameters (means)




Squared distance as log-likelihood

AssumeK=2, Q = SU S

single Gaussian of fixed covariance
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K-means as variance clustering criteria

Sk

both formulas can be written as

E(S) = Z S%| var(S*)
k=1

sample variance: var(S*) :|s_1k| Z” f,— 1 I° = 2|51k|2 Z” fo— 1, I°

pesS” pgeSk



K-means Clustering: Algorithm

e |nitialization step ()
o

1. pick K cluster centers randomly

o
2. assign each sample to its closest center o o o

e |teration steps

_ 1
1. compute centers as cluster means £, = 3 E k fp
2. re-assign each sample to the closest mean PSS
. Iterate until clusters stop changing

Lloyd’s algorithm (1957)

e Each step decreases the value of the objective function
optimization variables

K
_ 1 K
ES,p) = > Y |fo—ml? S =(S%,...,S")
e k=1 pes* p= (e f)

block-coordinate descent: step 1 optimizes {u,} for fixed {S,}, step 2 optimizes {S,} for fixed {u,}



K-means: Approximate Optimization

e K-means is fast and (sometimes) works well in practice
e But can get stuck in a local minimum of objective Ey

not surprising, since the exact optimization of its objective is NP-hard
Initialization

e o
e o

converged to local min global minimum
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K-means clustering examples:
Segmentation

here K-means finds
compact clusters
of pixels’ intensities
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In this case K-means (K=2) implicitly finds a good
threshold (between 2 clusters)



K-means for colors (RGB features):
Segmentation?

_— T — - e ety D Wpopercom 7 o k-—-;—3 .- v -
(mean color is used to show each segment/cluster)




K-means clustering examples:
Superpixels

0 Apply K-means to RGBXY features

[SLIC superpixels, Achanta et al., PAMI 2011]
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K-means Properties

Works best when clusters are spherical (blob like) |
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Fails for non-compact clusters
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K-means produces linear decision boundaries between features f, (why?)

Thus, K-means does not work if two clusters can not be separated
by a line/plane, i.e. if the data is linearly non-separable.



K-means Properties

e Sensitive to outliers
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Explanation: squared distance error grows too fast making any outlier extremely costly.
This also explains non-robustness of a “sample mean” statistic.

K
SSE =2 > [[f, — s

k=1 peSk

»

Possible solution: replace squared distances by absolute distances/
that grow at a slower pace. K >
SAE =>" >"|If, — 1| 0 £ = e

k=1 peS

Interestingly, in this case the optimal value of Uk is the “"median” of set Ch instead of its “mean”



K-means Summary

Good
e Principled (objective function) approach to clustering

e Simple to implement (the approximate iterative optimization)
e Fast

Not so good
e Onlyalocal minimum is found (sensitive to initialization)
e May fail for non-blob like clusters

e Maybe sensitive to outliers
Can add sparsity/complexity term
making K an additional variable

K
ES,uK) = Y > \fo—ml® + vI|K]|

k=1peSk

e Howtochoose K?

Akaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC)



(generalization)
Distortion Clustering

can use different “distortion” measures

K
k=1 peSy

examples of distortion measure || - |l

interpretation of parameters

|-l = |2 Souared K-means
L, norm
-Nla = |- absolute Kemedi
N/ e = el K-modes

NOTE: besides changing the distortion measure, there are different generalizations of K-means
requiring other interpretations of SSE objective
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K-modes clustering



From “means” towards “modes” clustering:

Kernel-based mode clustering

0 Formulate clustering as histogram partitioning
 look for modes in data histograms
e assign points to modes

100 100;
80
m MR
- NGRS 7
00 4%&{ :
Ao i 'y
SSRGS T 42t
40 =l .‘n < \:
20} =y
’ t'-&
o; v
TSre
"-‘i.f‘."é)'ft:"
-20 : 5 A L TN : :
20 30 40 50 60 70 80 90 100
L

data points data histogram and its modes clustering



Finding Modes In a Histogram
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0 How Many Modes Are There?
 Easy to see, not too obvious how to compute



Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]
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1. Initialize random seed, and fixed window

2. Calculate center of gravity ‘X’ of the window (the“mean”
3. Translate the search window to the mean
4. Repeat Step 2 until convergence

Iterative
Mode Search



Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

Multimodal Distributions
+ Parallel processing of an imtial tessellation.

+ Pruning of mode candidates.
+ (Classification based on the basin of attraction.
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Mean shift trajectories


http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Mean Shift as K-modes

[Salah, Mitche, Ben-Ayed 2010]
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Mean-shift segmentation relates to
distortion clustering with a bounded loss (K-modes)
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Mean shift trajectories


http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Mean-shift results
for segmentation

Figuwe 2: The howuse lmage. 233 x 192 pixels. 9603
colors.




Mean-shift results
for segmentation

lustering
[Comaniciu & Meer 2002]




Mean-shift results
for segmentation

‘ lustering

[Comaniciu & Meer 2002]

works well for
segments with

= . near-consistent color




What have we learned today

0 K-means clustering
0 K-modes clustering via mean-shift
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