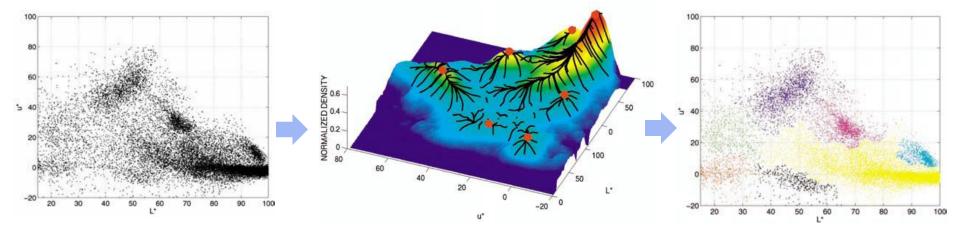


CSE 176 Introduction to Machine Learning Lecture 6: Gaussian Mixture Model and EM

Some materials from Yuri Boykov

From "means" towards "modes" clustering: Recap: *mode clustering*



data points

data histogram and its modes

clustering

(generalization)

Recap: Distortion Clustering

can use different "distortion" measures

$$E(S,\mu) = \sum_{k=1}^{K} \sum_{p \in S_k} ||f_p - \mu_k||_d$$

examples of distortion measure $\ \cdot\ _d$			interpretation of parameters μ_k
	$\ \cdot\ _d = \ \cdot\ ^2$	squared L_2 norm	K-means
	$\ \cdot\ _d = \ \cdot\ $	absolute L_2 norm	K-medians
	$\ \cdot\ _{d} = 1 - \exp(-\ \cdot\ ^{2})$		K-modes

Recap: Kernel Density Estimation

Kernel density estimate with bandwidth σ : a mixture having one component for each data point:

$$p(\mathbf{x}) = \sum_{n=1}^{N} p(\mathbf{x}|n) p(n) = \frac{1}{N\sigma^{D}} \sum_{n=1}^{N} K\left(\frac{\mathbf{x} - \mathbf{x}_{n}}{\sigma}\right) \qquad \mathbf{x} \in \mathbb{R}^{D}.$$

Usually the kernel K is Gaussian: $K\left(\frac{\mathbf{x}-\mathbf{x}_n}{\sigma}\right) = (2\pi)^{-D/2} \exp\left(-\frac{1}{2} \|(\mathbf{x}-\mathbf{x}_n)/\sigma\|^2\right).$

Recap: Mean-shift

Mean-shift algorithm: starting from an initial value of \mathbf{x} , it iterates the following expression:

$$\mathbf{x} \leftarrow \sum_{n=1}^{N} p(n|\mathbf{x}) \mathbf{x}_{n} \quad \text{where} \quad p(n|\mathbf{x}) = \frac{p(\mathbf{x}|n)p(n)}{p(\mathbf{x})} = \frac{\exp\left(-\frac{1}{2}\|(\mathbf{x} - \mathbf{x}_{n})/\sigma\|^{2}\right)}{\sum_{n'=1}^{N} \exp\left(-\frac{1}{2}\|(\mathbf{x} - \mathbf{x}_{n'})/\sigma\|^{2}\right)}$$

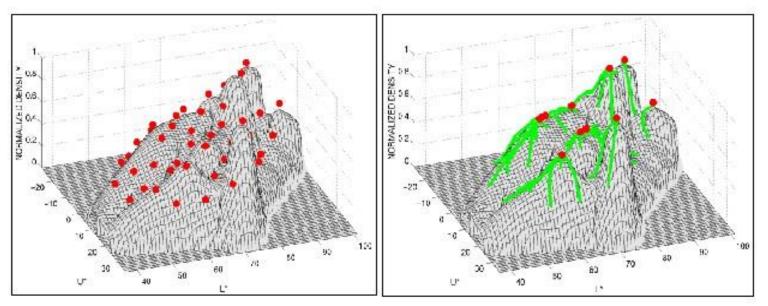
 $\sum_{n=1}^{N} p(n|\mathbf{x})\mathbf{x}_n$ can be understood as the weighted average of the N data points using as weights the posterior probabilities $p(n|\mathbf{x})$. The mean-shift algorithm converges to a mode of $p(\mathbf{x})$. Which one it converges to depends on the initialization. By running mean-shift starting at a data point \mathbf{x}_n , we effectively assign \mathbf{x}_n to a mode. We repeat for all points $\mathbf{x}_1, \ldots, \mathbf{x}_N$.

Recap: Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

Multimodal Distributions

- Parallel processing of an initial tessellation.
- Pruning of mode candidates.
- Classification based on the basin of attraction.



Mean shift trajectories

Today's topic

Gaussian Mixture Model (GMM)

Expectation-Maximization (EM)

K-means and MLE (maximum likelihood estimation)

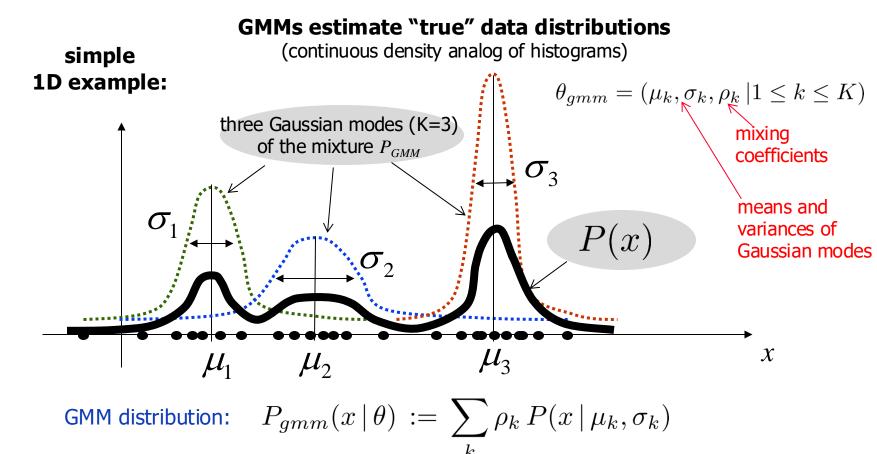
"hard"
K-means
$$E(S,\mu) = -\sum_{k=1}^{K} \sum_{p \in S^k} \log P(f_p \mid \mu_k)$$

multi-variate (i.e. $x, \mu \in R^{T}$) Gaussian distribution (simple special case $\Sigma = \sigma^2 \mathbf{I}$)

$$\frac{1}{P(x|\mu)} = \frac{1}{\sqrt{(2\pi\sigma^2)^N}} \exp{-\frac{\|x-\mu\|^2}{2\sigma^2}}$$

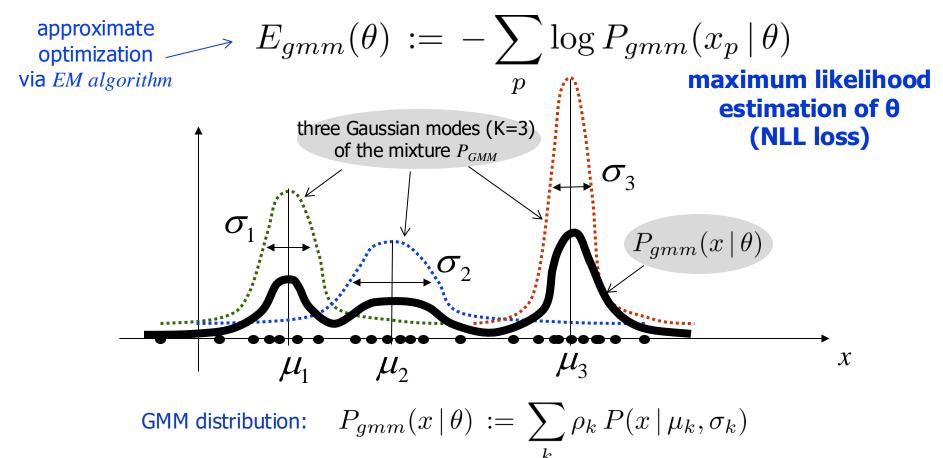
Towards soft clustering... Gaussian Mixture Models (GMM)

- Soft clustering using Gaussian Mixture Model (GMM)
 - no "hard" assignments of points to K distinct (Gaussian) clusters S^k
 - all points are used to estimate parameters of one complex K-mode distribution (GMM)



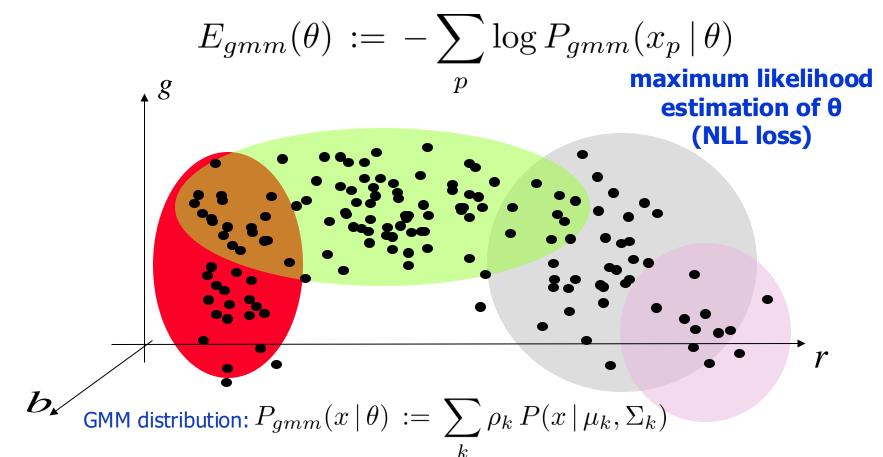
Towards soft clustering... Gaussian Mixture Models (GMM)

- Soft clustering using Gaussian Mixture Model (GMM)
 - no "hard" assignments of points to K distinct (Gaussian) clusters S^k
 - all points are used to estimate parameters of one complex K-mode distribution (GMM)



Towards soft clustering... Gaussian Mixture Models (GMM)

- Soft clustering using Gaussian Mixture Model (GMM)
 - no "hard" assignments of points to K distinct (Gaussian) clusters S^k
 - all points are used to estimate parameters of one complex K-mode distribution (GMM)



(basic) K-means GMM (or fuzzy K-means) VS. soft mode searching *hard* assignment to clusters estimates data distribution with separates data points into multiple multiple Gaussian modes Gaussian blobs only estimates means μ_i estimates both mean μ_i and (co)variance Σ_i for each mode - Σ_i can also be added as a cluster parameter (*elliptic K-means*) k=4

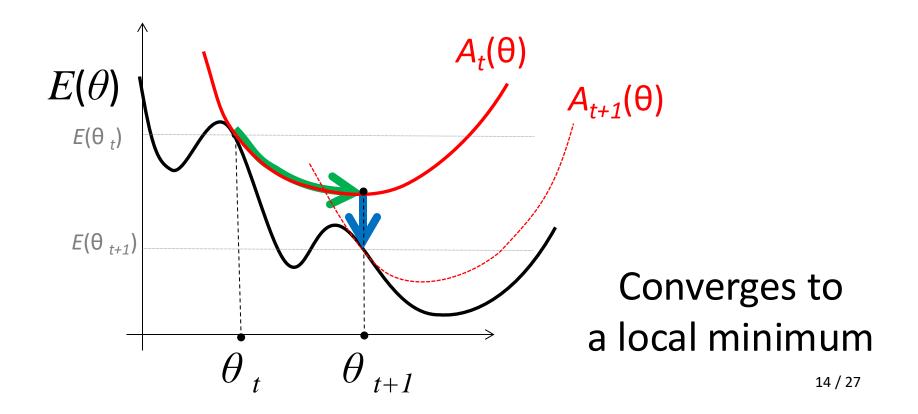
Optimization?

□How to estimate **mean**, **variance**, and **weights** of Gaussian components?

□Bound optimization in general

Bound optimization, in general

(Majorize-Minimize, Auxiliary Function, Surrogate Function)



GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_{p} | \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_{k} P(x_{p} | \mu_{k}, \sigma_{k}) \right)$$

$$L(\theta | S) \qquad L(\theta | S') \qquad \text{upper bound } L(\theta | S) \qquad \text{with arbitrary } S$$

$$\tilde{\theta} \qquad \theta = (\mu, \sigma, \rho)$$

 $L(\theta|S)$ - for any *S* defines an upper bounds for $E_{gmm}(\theta)$

$$\leq \left| -\sum_{k} \left(\sum_{p} S_{p}^{k} \right) \log \rho_{k} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p}) \right|$$

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_{p} \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_{k} P(x_{p} \mid \mu_{k}, \sigma_{k}) \right)$$

$$I(\theta \mid S) \qquad I(\theta \mid S') \qquad I(\theta \mid S') \qquad \text{for given } \tilde{\theta} = (\tilde{\mu}, \tilde{\sigma}, \tilde{\rho}) \qquad \text{can find tight upper bound} \qquad \tilde{S}_{p}^{k} = \frac{\tilde{\rho}_{k} P(x_{p} \mid \tilde{\mu}_{k}, \tilde{\sigma}_{k})}{\sum_{m} \tilde{\rho}_{m} P(x_{p} \mid \tilde{\mu}_{m}, \tilde{\sigma}_{m})} \qquad E-\text{step} \qquad \theta = (\mu, \sigma, \rho)$$

 $L(\theta|S)$ - for any *S* defines an upper bounds for $E_{gmm}(\theta)$

$$\leq \left| -\sum_{k} \left(\sum_{p} S_{p}^{k} \right) \log \rho_{k} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p}) \right|$$

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$E_{gmm}(\theta) := -\sum_{p} \log P_{gmm}(x_{p} \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_{k} P(x_{p} \mid \mu_{k}, \sigma_{k}) \right)$$

$$\downarrow L(\theta \mid \tilde{S}) \quad \text{for given } \tilde{\theta} = (\tilde{\mu}, \tilde{\sigma}, \tilde{\rho}) \quad \text{can find tight upper bound} \quad \tilde{S}_{p}^{k} = \frac{\tilde{\rho}_{k} P(x_{p} \mid \tilde{\mu}_{k}, \tilde{\sigma}_{k})}{\sum_{m} \tilde{\rho}_{m} P(x_{p} \mid \tilde{\mu}_{m}, \tilde{\sigma}_{m})} \quad \textbf{E-step} \quad \boldsymbol{\theta} = (\mu, \sigma, \rho)$$

$$\underline{L(\theta \mid S)} \quad \text{for any } S \text{ defines an upper bounds for } E_{gmm}(\theta)$$

$$\leq \left[-\sum_{k} \left(\sum_{p} S_{p}^{k} \right) \log \rho_{k} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \mathbf{H}(S_{p}) \right]$$

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

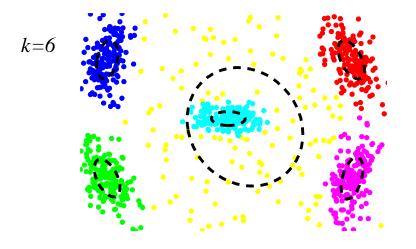
$$\begin{split} E_{gmm}(\theta) &:= -\sum_{p} \log P_{gmm}(x_{p} \mid \theta) \equiv -\sum_{p} \log \left(\sum_{k} \rho_{k} P(x_{p} \mid \mu_{k}, \sigma_{k})\right) \\ \text{In fact, equality holds specifically for} \\ S_{p}^{k} &= \frac{\rho_{k} P(x_{p} \mid \mu_{k}, \sigma_{k})}{\sum_{m} \rho_{m} P(x_{p} \mid \mu_{m}, \sigma_{m})} \\ \text{(plug-in to check, very easy)} \end{split} \qquad \begin{split} &\stackrel{\forall S_{p} \in \Delta_{K}}{\equiv} -\sum_{p} \log \left(\sum_{k} S_{p}^{k} \frac{\rho_{k} P(x_{p} \mid \mu_{k}, \sigma_{k})}{S_{p}^{k}}\right) \\ \text{Jensen's inequality} \\ \text{move "log" inside expectation E} \\ &= -\sum_{p} \sum_{k} S_{p}^{k} \log \rho_{k} - \sum_{p \in \mathcal{A}_{K}} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) + \sum_{p} \sum_{k} S_{p}^{k} \log S_{p}^{k} \\ &= -\sum_{k} \left(\sum_{p} S_{p}^{k}\right) \log \rho_{k} - \sum_{k} \sum_{p} S_{p}^{k} \log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p} \frac{\mathbf{H}(S_{p})}{\mathbf{H}(S_{p})} \end{split}$$

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

$$\leq \underbrace{\left[-\sum_{k}\left(\sum_{p}S_{p}^{k}\right)\log\rho_{k}\right]}_{k} - \sum_{k}\sum_{p}S_{p}^{k}\log P(x_{p} \mid \mu_{k}, \sigma_{k}) - \sum_{p}\mathbf{H}(S_{p})\right]$$

(basic) K-means VS. GMM (or fuzzy K-means)

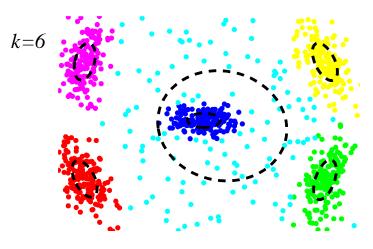
- □ *hard* assignment to clusters
 - separates data points into multiple Gaussian blobs
- \square only estimates means μ_i
 - Σ_i can also be added as a cluster parameter (*elliptic K-means*)



(elliptic) K-means color indicates assigned cluster

□ *soft* mode searching

- estimates data distribution with multiple Gaussian modes
- estimates both mean μ_i and (co)variance Σ_i for each mode



GMM color indicates locally strongest mode

(basic) K-means **GMM** (or fuzzy K-means) VS. □ *soft* mode searching *hard* assignment to clusters estimates data distribution with separates data points into multiple multiple Gaussian modes Gaussian blobs \square estimates both mean μ_i and only estimates means μ_i (co)variance Σ_i for each mode - Σ_i can also be added as a cluster parameter (elliptic K-means) k=4

hard clustering may not work well when clusters overlap

(may not be a problem in image segmentation, since objects do not "overlap" in RGBXY) While this is an optimal GMM, standard EM may converge to a bad solution (local minimum)

(basic) K-meansvs.GMM (or fuzzy K-means)hard assignment to clusters
- separates data points into multiplesoft mode searching
- estimates data distribution with

- Gaussian blobs
- \square only estimates means μ_i
 - Σ_i can also be added as a cluster parameter (*elliptic K-means*)
- $\square computationally cheap steps$ (block-coordinate descent, Lloyd's algorithm) $<u>unless estimating covariances</u> <math>\Sigma_k$ (elliptic case)
- sensitive to local minima

- multiple Gaussian modes
- estimates both mean μ_i and (co)variance Σ_i for each mode

- $\square expensive steps (mostly due to <math>\Sigma_k$) (iterative EM algorithm)
- sensitive to local minima
- becomes slow to estimate Σ from high dimensional data, also needs lots of points