
CSE 176 Introduction to Machine Learning
Lecture 6: Gaussian Mixture Model and EM

Some materials from Yuri Boykov



From “means” towards “modes” clustering:

Recap: mode clustering

data points data histogram and its modes clustering



can use different “distortion” measures

(generalization) 

Recap: Distortion Clustering

K-modes

K-means

K-medians

squared
L2 norm

absolute
L2 norm

interpretation of parameters  μkexamples of distortion measure d|||| 



Recap: Kernel Density Estimation



Recap: Mean-shift



Recap: Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]
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http://www.caip.rutgers.edu/~comanici/clusterDemo.html


Today’s topic

❑Gaussian Mixture Model (GMM)

❑Expectation-Maximization (EM)



K-means and MLE (maximum likelihood estimation)

“hard” 
K-means

multi-variate  (i.e.                    )

Gaussian distribution
(simple special case                  )



GMM distribution: 

•     Soft clustering using Gaussian Mixture Model (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters  Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)
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three Gaussian modes (K=3)
of the mixture PGMM

simple

1D example:

GMMs estimate “true” data distributions
(continuous density analog of histograms)

mixing 
coefficients

means and 
variances of
Gaussian modes

Towards soft clustering…
 Gaussian Mixture Models (GMM)



•     Soft clustering using Gaussian Mixture Model (GMM)
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three Gaussian modes (K=3)
of the mixture PGMM

approximate 

optimization 
via EM algorithm

Towards soft clustering…
 Gaussian Mixture Models (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters  Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMM distribution: 

maximum likelihood
estimation of θ

(NLL loss)
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•     Soft clustering using Gaussian Mixture Model (GMM)

Towards soft clustering…
 Gaussian Mixture Models (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters  Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMM distribution: 

maximum likelihood
estimation of θ

(NLL loss)



k=4 k=4

hard assignment to clusters
-    separates data points into multiple 

Gaussian blobs 

only estimates means  μi

-    Σi  can also be added as a cluster 

parameter  (elliptic K-means)

soft mode searching
-    estimates data distribution with    

multiple Gaussian modes

estimates both mean  μi and 

(co)variance  Σi for each mode
 

Gaussian clusters/modes in:

      (basic)  K-means        vs.        GMM  (or fuzzy K-means)



Optimization?

❑How to estimate mean, variance, and weights of Gaussian 
components?

❑Bound optimization in general



Converges to 
a local minimum 

E(θ)

θ t θ t+1

E(θ t)

E(θ t+1)

Bound optimization, in general

At+1(θ)

At(θ)

14 / 27

(Majorize-Minimize, Auxiliary Function, Surrogate Function)



Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

L (θ|S)    -  for any S  defines an upper bounds for Egmm(θ)

θ = (μ,σ,ρ)

with arbitrary S

upper bound L (θ|S) 



Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

θ = (μ,σ,ρ)

E-step

for given            
can find tight upper bound 

L (θ|S)    -  for any S  defines an upper bounds for Egmm(θ)



Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

θ = (μ,σ,ρ)
M-step 

given    , compute          minimizing 

L (θ|S)    -  for any S  defines an upper bounds for Egmm(θ)

E-step

for given            
can find tight upper bound 



Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

Jensen’s inequality
move “log” inside expectation E

entropy

In fact, equality holds specifically for

(plug-in to check, very easy)



Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

fuzzy K-means loss cluster cardinality term

θ = (μ,σ,ρ)
M-step 

given    , compute          minimizing 

L (θ|S)    -  for any S  defines an upper bounds for Egmm(θ)

E-step

Summary of EM algorithm:
- iterative EM steps 
- converges to local minimum
- essentially, block-coordinate descent 
     for fuzzy K-means loss L (θ | S)

for given            
can find tight upper bound 



GMM(elliptic) K-means

color indicates locally strongest mode color indicates assigned cluster 

k=6 k=6

hard assignment to clusters
-    separates data points into multiple 

Gaussian blobs 

only estimates means  μi

soft mode searching
-    estimates data distribution with    

multiple Gaussian modes

estimates both mean  μi and 

(co)variance  Σi for each mode
 

-  Σi can also be added as a cluster  

parameter  (elliptic K-means)

Gaussian clusters/modes in:

      (basic)  K-means        vs.        GMM  (or fuzzy K-means)



hard clustering may not work well

when clusters overlap 

k=4 k=4

(may not be a problem in image segmentation, 
since objects do not “overlap” in RGBXY) 

While this is an optimal GMM,

standard EM may converge to
a bad solution (local minimum)

hard assignment to clusters
-    separates data points into multiple 

Gaussian blobs 

only estimates means  μi

-    Σi  can also be added as a cluster 

parameter  (elliptic K-means)

soft mode searching
-    estimates data distribution with    

multiple Gaussian modes

estimates both mean  μi and 

(co)variance  Σi for each mode
 

Gaussian clusters/modes in:

      (basic)  K-means        vs.        GMM  (or fuzzy K-means)



soft mode searching
-    estimates data distribution with    

multiple Gaussian modes

estimates both mean  μi and 

(co)variance  Σi for each mode

expensive steps (mostly due to Σk)      
(iterative EM algorithm)

sensitive to local minima

becomes slow to estimate  Σ 

from high dimensional data, 

also needs lots of points 

    

hard assignment to clusters
-    separates data points into multiple 

Gaussian blobs 

only estimates means  μi

-    Σi  can also be added as a cluster 

parameter  (elliptic K-means)

computationally cheap steps       
(block-coordinate descent, Lloyd’s algorithm)

sensitive to local minima

    

   

unless estimating covariances Σk (elliptic case)

Gaussian clusters/modes in:

      (basic)  K-means        vs.        GMM  (or fuzzy K-means)
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