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CSE 176 Introduction to Machine Learning

Lecture 6: Gaussian Mixture Model and EM

Some materials from Yuri Boykov



From “means” towards “modes” clustering:

Recap: mode clustering

data points
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(generalization)

Recap: Distortion Clustering

can use different “distortion” measures

K
k=1 peSy

examples of distortion measure || - |l interpretation of parameters
e = -1 P k-means
L, norm
-Nla = |- absolute Kemedi

v | -lla = 1—exp(—|- %)

K-modes



Recap: Kernel Density Estimation

Kernel density estimate with bandwidth o: a mixture having one component for each data point:

kap(x\np(n DZ (" x“) x € R”.

Usually the kernel K is Gaussian: K (*2>=) = (27) P/ exp (—3|(x — xn)/cr||2).




Recap: Mean-shift

Mean-shift algorithm: starting from an initial value of x, it iterates the following expression:

p(xln)p(n) _  exp (—3llx=xa)/o]")
P S exp (<= xw)/o|)

Z,le p(n|x)x, can be understood as the weighted average of the N data points using as
weights the posterior probabilities p(n|x). The mean-shift algorithm converges to a mode of
p(x). Which one it converges to depends on the initialization. By running mean-shift starting
at a data point x,,, we effectively assign x,, to a mode. We repeat for all points x;,...,Xy.

N
X Zp(n\x)xn where  p(n|x) =
n=1




Recap: Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

Multimodal Distributions
+ Parallel processing of an imtial tessellation.

+ Pruning of mode candidates.
+ (Classification based on the basin of attraction.
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http://www.caip.rutgers.edu/~comanici/clusterDemo.html

TOday’S tOpiC \

JGaussian Mixture Model (GMM)
JExpectation-Maximization (EM)



K-means and MLE (maximum likelihood estimation)

K
thard”  p(s ) = <303 log PUy | )

K-means P gyt

multi-variate (i.e. ©, 1t € RN 1 ||37 - M”z

Gaussian distribution P(z|p) = \/(QWO.Z)N OXp 2 g2

(simple special case Y = o2 1)




Towards soft clustering...
Gaussian Mixture Models (cmm)

* Soft clustering using Gaussian Mixture Model (GMM)

- no “hard” assighments of points to K distinct (Gaussian) clusters Sk
- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMMs estimate “true” data distributions
simple (continuous density analog of histograms)

1D example: Ogrmm = (1ks ks pi |1 < k < K)

mixing
coefficients

A three Gaussian modes (K=3)
of the mixture Pgym

means and
variances of
Gaussian modes

GMM distribution: Py (2] 0) = Z pr P(x | px, or)



Towards soft clustering...
Gaussian Mixture Models (cmm)

* Soft clustering using Gaussian Mixture Model (GMM)

- no “hard” assighments of points to K distinct (Gaussian) clusters Sk
- all points are used to estimate parameters of one complex K-mode distribution (GMM)

opumigation —— Egmm (0) - Z log Pymm (zp | 0)
via EM algorithm o maximum likelihood
; ‘-. estimation of 0
R three Gaussian modes (K=3) (NLL loss)

of the mixture Pgym

GMM distribution: Py (2] 0) = Z pr P(x | px, or)



Towards soft clustering...
Gaussian Mixture Models (cmm)

Soft clustering using Gaussian Mixture Model (GMM)

- no “hard” assighments of points to K distinct (Gaussian) clusters Sk
- all points are used to estimate parameters of one complex K-mode distribution (GMM)

Eynm(8) = — 3108 Pymin (5| )

g D maximum likelihood
1 estimation of 6
(NLL loss)

b




Gaussian clusters/modes In.

basicy K-means

0 hard assignment to clusters

- separates data points into multiple
Gaussian blobs

0 only estimates means y;

- 2; can also be added as a cluster
parameter (elliptic K-means)

VS.

G M M (or fuzzy K-means)

0 soft mode searching

- estimates data distribution with
multiple Gaussian modes

0 estimates both mean t; and
(co)variance 2; for each mode



Optimization?

(JHow to estimate mean, variance, and weights of Gaussian
components?

(dBound optimization in general




Bound optimization, in general

(Majorize-Minimize, Auxiliary Function, Surrogate Function)
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Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

Egmm(0) : Z log Pyrum/(zp |0) = — Zlog (Z p P(zp | o O'k))

LO]S) \ \L(0|S") S e

— upper bound L (6]S)
with arbitrary S

. > 0= (1,0,p)

L (6]S) - for any S defines an upper bounds for E ()

IA

=Y (ZS;;) logpe — > Y SElogP(xp|pe,on) — Y H(S,)
k p E p p



Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

B (0) = — 3 log Py 16) = —3 log (zpmwk,m)
p p k

L(6)|5) L(0|S") L(6|S) for given § = (1,5, p)
I U N . 2 can ﬁnd M Upper bound
| _ pkP(zyplpn, ok)
B Zm ﬁmp(wp|ﬂm>5'm)

E-step

. > 0= (1,0,p)

L (6]S) - for any S defines an upper bounds for E ()

IA

=Y (ZS;;) logpe — > Y SElogP(xp|pe,on) — Y H(S,)
k p E p p



Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

B (0) = — 3 log Py 16) = —3 log (zw(wk,m)
P p k

L(6]S5) for given 6 = (i1, 5, p)
. 7 can find tight upper bound

prP(@pl ik, Or)
Eomm = - =
gmm (0) > e P (@i 1)

E-step

M-step |

given S, compute 0z minimizing L(0]5)

> 0= (w,0,p)

L (6]S) - for any S defines an upper bounds for E ()

IA

-2 (255) logpr = 3> Sy log Play| pyon) = 3 H(S))
k p kE p p



Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

Egmm(e) = — Z log Pgmm(a?p 0) = — Zlog (Z pr P(xp | p, O'k))
p

AR Z log Z 5 pi P Jip | [k, OF)
In fact, equality holds specifically for o

Sk o pkp(xp')uknak)
P P Jensen’s |nequa||ty
Zm Pm (prmm, Um) move “log” inside expectation E

(plug-in to check, very easy)
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Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

_ Zlog (Z pr Py | N’ﬁ"’f))
> 2

~

Summary of EM algorithm: L(8]S) for given 0 — (71,5, p)
- iterative EM steps find tiaht b d
- converges to local minimum ~~ \ Fee Can Tind tgnt upper boun
- essentially, block-coordinate descent !  prP(xplik, o)
for fuzzy K-means loss L (6 | S) S PP (2| iy Gn)

E-step
7 ' ] > e = (M’G1p)

given S, compute 0z minimizing L(0]5)

Egmm(0) = — Z log Pyrmm(p | 0)
p

L (6]S) - for any S defines an upper bounds for E ()

cluster cardinality term fuzzy K-means loss

kK \p p

kE p
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Gaussian clusters/modes In.

basicy K-means

VS. G M M (or fuzzy K-means)

0 hard assignment to clusters

- separates data points into multiple
Gaussian blobs

0 only estimates means y;

- 2; can also be added as a cluster

parameter (elliptic K-means)
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(elliptic) K-means
color indicates assigned cluster

0 soft mode searching

- estimates data distribution with
multiple Gaussian modes

0 estimates both mean t; and
(co)variance 2; for each mode

GMM

color indicates locally strongest mode




Gaussian clusters/modes In.

basicy K-means

VS.

G M M (or fuzzy K-means)

0 hard assignment to clusters

- separates data points into multiple
Gaussian blobs

0 only estimates means y;

- 2; can also be added as a cluster
parameter (elliptic K-means)

hard clustering may not work well
when clusters overlap

(may not be a problem in image segmentation,
since objects do not “overlap” in XY)

0 soft mode searching

- estimates data distribution with
multiple Gaussian modes

0 estimates both mean t; and
(co)variance 2; for each mode

While this is an optimal GMM,
standard EM may converge to
a bad solution (local minimum)



Gaussian clusters/modes In.

basicy K-means VS.

hard assignment to clusters

- separates data points into multiple
Gaussian blobs

only estimates means y;

- 2; can also be added as a cluster
parameter (elliptic K-means)

computationally cheap steps

(block-coordinate descent, Lloyd’s algorithm)
unless estimating covariances 2, (elliptic case)

sensitive to local minima

G M M (or fuzzy K-means)

soft mode searching

- estimates data distribution with
multiple Gaussian modes

estimates both mean (; and
(co)variance 2; for each mode

expensive steps (mostly due to %)
(iterative EM algorithm)

sensitive to local minima

becomes slow to estimate X
from high dimensional data,
also needs lots of points
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