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Lecture 8: Dimensionality Reduction



Recap: Kernel K-means

ES.p)= ) > Ifp—ml?

k=1 peS*

K

En(S,i) = > > lof,) — ful?

k=1 pESk

input space feature space

(Basic K-means)

(Kernel K-means)



Recap: Explicit Kernel < Implicit Embedding
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Recap: kernel K-means or average association

“self-association” of cluster SK




K-means

Z”fp_#s||2+2”fp_ﬂ§”2 _

g — res Y

probabilistic K-means kernel K-means
make models more complex make data more complex
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Other kernel (graph) clustering objectives

Average Association Average Cut

“self-association” for SK

“cut” for SK




Today’s topics

Principle Component Analysis
(dMulti Dimensional Scaling (MDS)




Motivation for Dimensionality Reduction
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Motivation for Dimensionality Reduction

(A Data Compression

N

\ 4




Motivation for Dimensionality Reduction

(A Data Compression

X Reduce data from
x X 2Dto 1D
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Data Compression
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Principal Component Analysis (PCA) problem
formulation 2

N

10 -10

Reduce from 2-dimension to 1-dimension: Find a direction (avector «(!) € R™)
onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find kvectorsu (1) () .. y®*)
onto which to project the data, so as to minimize the projection error.

Andrew Ng



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector p and covariance matrix X
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y= Az —p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors



Covariance

« Variance and Covariance:
» Measure of the “spread” of a set of points around their center of mass(mean)

* Variance:
« Measure of the deviation from the mean for pointsin one dimension

 Covariance:

» Measure of how much each of the dimensions vary from the mean with
respect to each other

» Covariance is measured between two dimensions
» Covariance seesif thereis arelation between two dimensions
» Covariance between one dimension is the variance
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Negative: While oneincrease the other decrease



Covariance

» Used to find relationships between dimensions in high dimensional
data sets

The Sample mean



Eigenvector and Eigenvalue

AX = A
A: Square Matirx

A: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

» The zero vector can not be an eigenvector
» Thevalue zero can beeigenvalue



Eigenvector and Eigenvalue

AX = XX
A: Square Matirx

A: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value
2 —4]

2
Show x = [1] isaneigenvector for A = [3 6

soaonsx= [ 4[] [

But for A=0, Ax=0|_|=
1 0

Thus,xis aneigenvectorof A,and A =0 isaneigenvalue.



Eigenvector and Eigenvalue

_ AxX -Ax=0
AX=Ax (A=AN)x=0
If we define anew matrix B:  wep B=A-A
Bx=0

BUT! an eigenvector
cannot be zero!!

x will be an eigenvector of Aif and only if Bdoes
not have an inverse, or equivalently det(B)=0:

det(A-Al)=0

fBhasaninverse: —» X =B10=0 x




Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of l? —11

s



Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of P ~12
A=|
Y. L 5]
M-AE [ =(A—2)(L+5) +12
-1 A45

=M+ +2=(A+1)(A+2)

two eigenvalues:—1, -2

Note: The roots of the characteristic equation can be repeated. Thatis, A1 = A2 =. = A
If that happens, the eigenvalue is said to be of multiplicity k.



Principal Component Analysis

Input: x € RP: D = {x1,...,xn}
Set of basis vectors: ujp,...,Uxk

Summarize a D dimensional vector Xwith Kdimensional
feature vector h(x)

U] - X
U - X

h(x) =




Principal Component Analysis

U =[uy,...,ux]
Basis vectors are orthonormal -
u;u; =0
Ju;|| =1
New data representation h(x)
Zj = U5+ X

h(x) — [21, - .,ZK]T



The space of all face images
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When viewed as vectors of pixel values, face images are
extremely high-dimensional

— 100x100 image = 10,000 dimensions

— Slow and lots of storage

But very few 10,000-dimensional vectors are valid face
images

We want to effectively model the subspace of face images
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slide by Derek Hoiem



Eigenfaces example

Top eigenvectors: u,,...u,




Representation and reconstruction

* Face x in “face space” coordinates:

T k) )

 Reconstruction:
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Reconstruction

P = 400

After computing eigenfaces using 400 face
images from ORL face database

slide by Derek Hoiem



Appllcatlon Image compressmn

Original Image

e Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid
e View each as a 144-D vector






PCA compression:
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16 most iImportant eigenvectors

2 4 6 81012 2 4 6 81012
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6 most important
eigenvectors
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10 10
12 12

2 4 6 8 10 12

2 4 6 8



PCA compression: 144D =» 3D




3 most important eigenvectors




PCA compression: 144D = 1D




Dimensionality reduction

 PCA (Principal Component Analysis):

* Find projection that maximize the variance
 LDA(Linear Discriminant Analysis):

« Maximizing the component axes for dass-separation
« Multidimensional Scaling:

 Find projectionthat best preserves inter--pointdistances
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