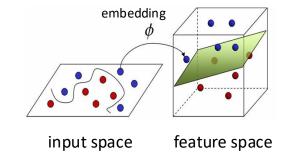


CSE 176 Introduction to Machine Learning

Lecture 8: Dimensionality Reduction

Recap: Kernel K-means



$$E(S, \mu) = \sum_{k=1}^{K} \sum_{p \in S^k} ||f_p - \mu_k||^2$$

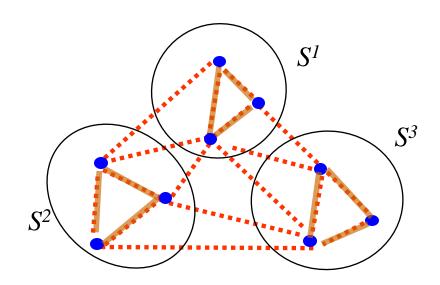
(Basic K-means)

$$E_k(S,\hat{\mu}) = \sum_{k=1}^K \sum_{p \in S^k} \|\phi(f_p) - \hat{\mu}_k\|^2$$
 (Kernel K-means)

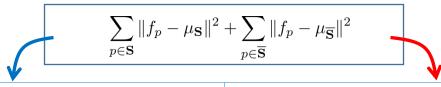
$$E_k(S,\hat{\mu}) = \sum_{k=1}^K \sum_{p \in S^k} \| \phi(f_p) - \hat{\mu}_k \|^2$$
 just plug-in
$$\hat{\mu}_k = \frac{1}{|S^k|} \sum_{q \in S^k} \phi(f_q)$$
 equivalent
$$E_k(S) = -\sum_{k=1}^K \frac{\sum_{pq \in S_k} k(f_p, f_q)}{|S^k|}$$

Recap: kernel K-means or average association

$$E(S) = -\sum_{k=1}^{K} \underbrace{\sum_{pq \in S_k} A_{pq}}^{\text{"self-association" of cluster } S^k}_{|S^k|}$$

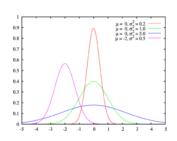


K-means



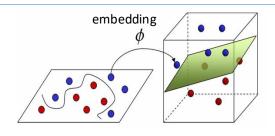
probabilistic K-means make models more complex

$$-\sum_{p\in\mathbf{S}}\ln\Pr(f_p|\theta_{\mathbf{S}})-\sum_{p\in\bar{\mathbf{S}}}\ln\Pr(f_p|\theta_{\bar{\mathbf{S}}})$$



kernel K-means make data more complex

$$\sum_{p \in \mathbf{S}} \|\phi(f_p) - \hat{\mu}_{\mathbf{S}}\|^2 + \sum_{p \in \overline{\mathbf{S}}} \|\phi(f_p) - \hat{\mu}_{\overline{\mathbf{S}}}\|^2$$



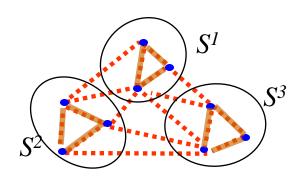
input space

feature space

Other kernel (graph) clustering objectives

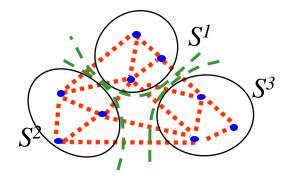
Average Association

"self-association" for S^k $-\sum_{k=1}^K \underbrace{S^{k'}A\ S^k}_{|S^k|}$



Average Cut

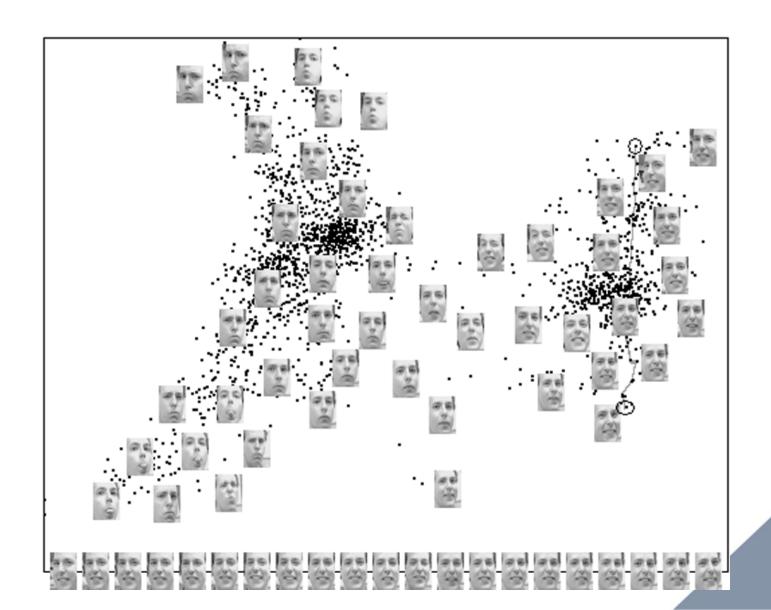
$$\sum_{k=1}^{K} \underbrace{\underbrace{S^{k'} A \left(\mathbf{1} - S^k \right)}^{\text{"cut" for } S^k}}_{|S^k|}$$



Today's topics

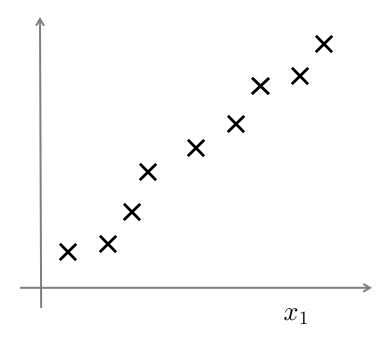
- ☐ Principle Component Analysis
- ☐ Multi Dimensional Scaling (MDS)

Motivation for Dimensionality Reduction



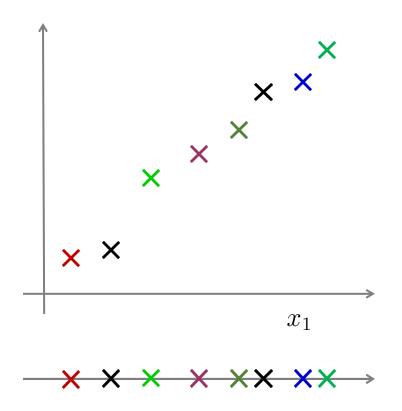
Motivation for Dimensionality Reduction

☐ Data Compression



Motivation for Dimensionality Reduction

☐ Data Compression



Reduce data from 2D to 1D

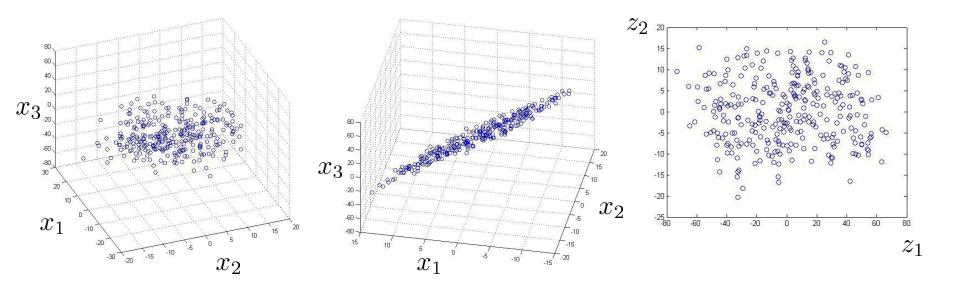
$$x^{(1)} \longrightarrow z^{(1)}$$

$$x^{(2)} \longrightarrow z^{(2)}$$

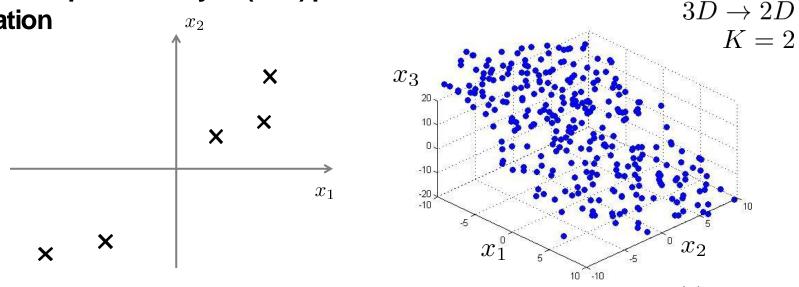
•

$$x^{(m)} \rightarrow z^{(m)}$$

Data Compression



Principal Component Analysis (PCA) problem formulation x_2



Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

- 1. Compute mean vector μ and covariance matrix Σ of original points
- 2. Compute eigenvectors and eigenvalues of Σ
- 3. Select top r eigenvectors
- 4. Project points onto subspace spanned by them:

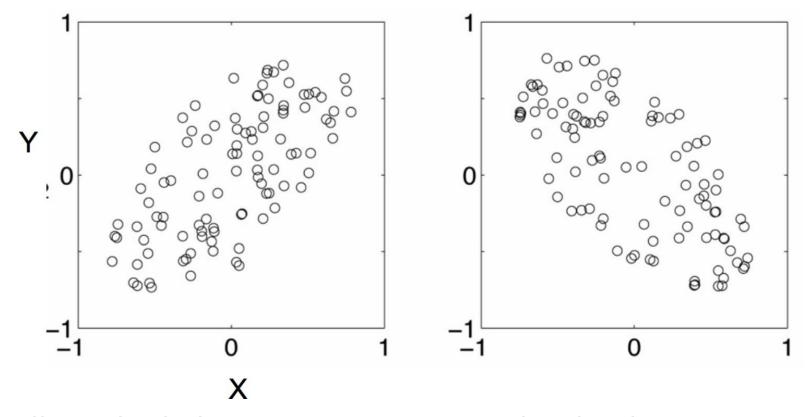
$$y = A(x - \mu)$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
 - Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
 - Measure of the deviation from the mean for points in one dimension
- Covariance:
 - Measure of how much each of the dimensions vary from the mean with respect to each other

- Covariance is measured between two dimensions
- Covariance sees if there is a relation between two dimensions
- Covariance between one dimension is the variance



Positive: Both dimensions increase or decrease together

Negative: While one increase the other decrease

Covariance

 Used to find relationships between dimensions in high dimensional data sets

$$q_{jk} = \frac{1}{N} \sum_{i=1}^{N} \left(X_{ij} - E(X_j) \right) \left(X_{ik} - E(X_k) \right)$$
The Sample mean

 $Ax = \lambda x$

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
 The value zero can be eigenvalue

$$Ax = \lambda x$$

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

Show
$$x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is an eigenvector for $A = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix}$

Solution:
$$Ax = \begin{bmatrix} 2 & -4 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

But for
$$\lambda = 0$$
, $\lambda x = 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

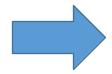
Thus, x is an eigenvector of A, and $\lambda = 0$ is an eigenvalue.

$$Ax = \lambda x \longrightarrow Ax - \lambda x = 0$$

$$(A - \lambda I)x = 0$$

If we define a new matrix B:
$$\longrightarrow$$
 $B = A - \lambda I$ $Bx = 0$

If B has an inverse:
$$\longrightarrow$$
 $X = B^{-1}0 = 0$ \Longrightarrow BUT! an eigenvector cannot be zero!!



x will be an eigenvector of A if and only if B does not have an inverse, or equivalently det(B)=0:

$$\det(A - \lambda I) = 0$$

Example 1: Find the eigenvalues of

$$A = \begin{bmatrix} 2 & -1 \\ 1 & -5 \end{bmatrix}$$

Example 1: Find the eigenvalues of $A = \begin{bmatrix} 2 & -1 \\ A = \end{bmatrix}$ $\begin{vmatrix} \lambda I - A & | \\ -1 & \lambda + 5 \end{vmatrix} = (\lambda - 2)(\lambda + 5) + 12$

$$=\lambda^2+3\lambda+2=(\lambda+1)(\lambda+2)$$

two eigenvalues: -1, -2

Note: The roots of the characteristic equation can be repeated. That is, $\lambda_1 = \lambda_2 = ... = \lambda_k$. If that happens, the eigenvalue is said to be of multiplicity k.

Principal Component Analysis

Input:
$$\mathbf{x} \in \mathbb{R}^D \colon \mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

Set of basis vectors: $\mathbf{u}_1, \dots, \mathbf{u}_K$

Summarize a D dimensional vector X with K dimensional feature vector h(x)

$$h(\mathbf{x}) = \left[egin{array}{c} \mathbf{u}_1 \cdot \mathbf{x} \ \mathbf{u}_2 \cdot \mathbf{x} \ & \cdots \ \mathbf{u}_K \cdot \mathbf{x} \end{array}
ight]$$

Principal Component Analysis

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

Basis vectors are orthonormal

$$\mathbf{u}_i^T \mathbf{u}_j = 0$$
$$||\mathbf{u}_i|| = 1$$

New data representation h(x)

$$z_j = \mathbf{u}_j \cdot \mathbf{x}$$

 $h(\mathbf{x}) = [z_1, \dots, z_K]^T$

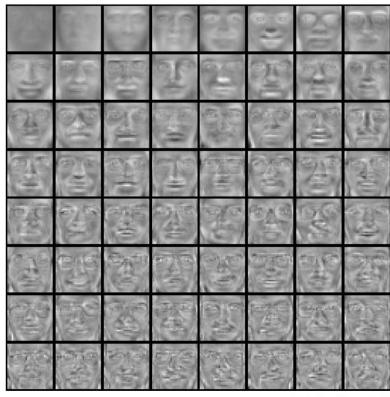
The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
 - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces example

Top eigenvectors: $u_1, \dots u_k$

Mean: µ



slide by Derek Hoiem

Representation and reconstruction

• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)]$$

$$= w_1, \dots, w_k$$

Reconstruction:

Reconstruction

After computing eigenfaces using 400 face images from ORL face database

Application: Image compression

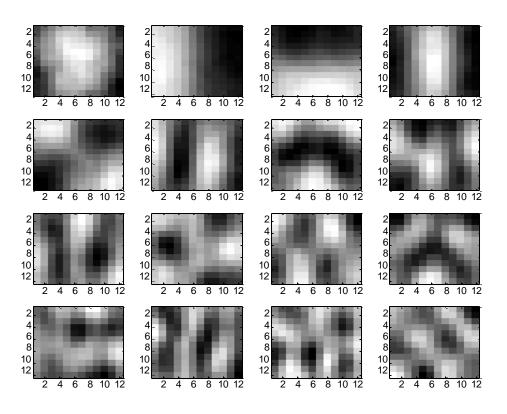
Original Image

- Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

PCA compression:

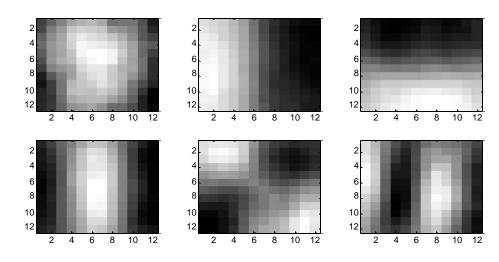
PCA compression:

16 most important eigenvectors



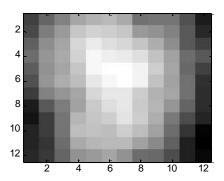
PCA compression: 144D -> 6D

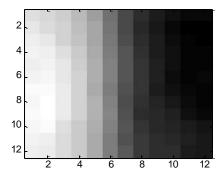
6 most important eigenvectors

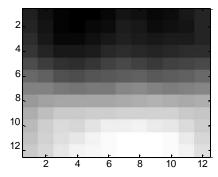


PCA compression: 144D → 3D

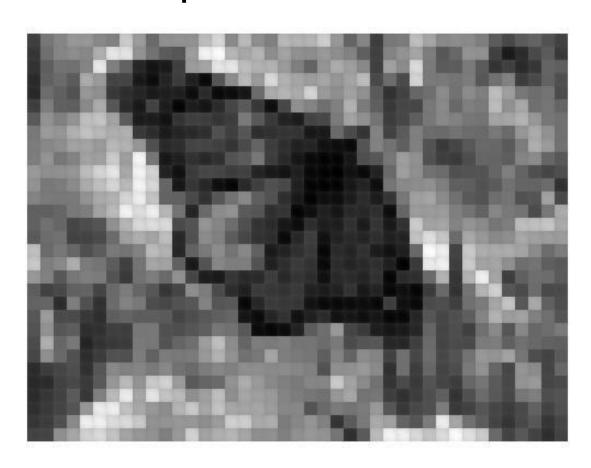
3 most important eigenvectors







PCA compression: 144D → 1D



Dimensionality reduction

- PCA (Principal Component Analysis):
 - Find projection that maximize the variance
- LDA(Linear Discriminant Analysis):
 - Maximizing the component axes for dass-separation
- Multidimensional Scaling:
 - Find projection that best preserves inter--point distances

• . . .