N,

UCMERCED

CSE 176 Introduction to Machine Learning

Lecture 9: Neural Network

Some slides from Simon Prince, Dan Jurafsky, Roni Sengupta, and Olga Veksler

ipal Component Analysis (PCA)

Princ

Recap

O

o]

80

-40 -2

L

60

20

A0F

-25
-80

Recap: Principal Component Analysis (PCA)

3D — 2D
K =2

10 -10

Reduce from 2-dimension to 1-dimension: Find a direction (avector u(1) € R™)
onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find kvectorsu (1) () .. y®*)
onto which to project the data, so as to minimize the projection error.

Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector p and covariance matrix X
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y= Az —p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors

Today’s topic

(dShallow Neural Network
(Deep Neural Network
(JLosses

N,

JCMERCED

Shallow Neural Network

Linear Classification

For example: fish classification - salmon or sea bass?
dextract two features, fish length and fish brightness

feature 1|33 2|63 3_[23 4 _|64| &= individual
vector ‘ X X X X 7.0 = featuresx};
e.g. fish length
and brightness

- - -

salmon sea bass salmon sea bass

y1=0 y2=1 y3=0 y4=1

Qy' is the output (label or target) for example x!

Linear Classification (perceptron)

dFor two class problem and 2-dimensional data (feature vectors)

5 _
A “gOOd’,
X2 linear transformation >@ label
o from 2D space to 1D
o good
o WoHWiX;HW5X, = (0 separation
° ° K by simple
° threshold
e o o o
e W0 T~ WiXy —l;W2X2.< 0 @ Iabel
] ® o
Vv -
thresholding f _
W,X) = U (Wy+W,X,+W,X f(w,Xx) € {0
can be formally () (0T V1AL TVV? 2) () {
represented by this 1 u(t) _ _
prediction function 0 unit step function u(t) ;

t (ak.a. Heaviside function)

Neural Unit

* Take weighted sum of inputs, plus a bias
Z= b+ WX
i
Z=W-X+Db

* Instead of just using z, we'll apply a nonlinear
activation function f:

y=a= 1(z

Non-linear Activation Function

Sigmoid
1
1+ e2

y=s(9=

Final function the unit is computing

1

V= ST 1 e (wox)

Neural Unit

Output value }’

Non-linear activation function

Weighted sum

Weights w,
Input layer x;

An example

Suppose a unit has:

w = [0.2,0.3,0.9]
b = 0.5

What happens with input x:
x = [0.5,0.6,0.1]

1
1 _ 1
1+ @ (:5%2+ .63+ .19+ .5) - 1+ e 0.87 = /0

N,

tanh(z)

y

-1.0.

Other non-linear activation function

Most Common:

0.5

0.0

1.0 10
_ aZ _
y= ¢ _y=max(z0)
e+ e 2 -
% o
g
g}
-0.5 -5
=10 -5 0 5 10 —1075 _5 0 5 10
tanh RelU

Rectified Linegr Unit

N,

UCMERCED

Perceptron

* A very simple neural unit
e Binary output (0or 1)
* No non-linear activation function

(0, ifwx+b<0
YT 1, ifwextb>0

Perceptron from the 50’s and 60’s

https://www.youtube.com/watch?v=cNxadbrN al&t=71s

https://www.youtube.com/watch?v=cNxadbrN_aI&t=71s

The XOR problem

Minsky and Papert (1969)

(dCan perceptron compute simple functions of input?

AND OR XOR
X1l X2y X1l X2y X1l X2y
O 0 |0 O 0 |0 O 0 |0
O 1 |0 O 1 |1 O 1 |1
1 0 |0 1 0 |1 1 0 |1
1 1 |1 1 1 |1 1 1 10

Easy to build AND or OR with perceptron

0, ifw-x+b<0
YTV 1, ifw-xtb>0

X9
X2/1/’<)
—Y//] AND
_|_1/ X1l X2 |y
O 0 |0
O 1 |0
AND 10 |0
1 1 |1

s it possible to capture XOR with perceptrons?

(dPause the lecture and try for yourself!
INo!

JWhy? Perceptrons are linear classifiers

Decision boundaries

\XZA X2A X2A
1 55\\ O 1 @ O 1 @ O
\\\\ \\\)
TR TR
a) Xq AND x5 b) X1 OR X,) Xq XOR Xy

XOR is not a linearly separable function!

Solution to the XOR problem

(IXOR can't be calculated by a single perceptron

(JXOR can be calculated by a layered network of units.

@\

0 O

x1 x2

O R P OIK

0 1
1 0
1 1

The hidden representation h

Xz‘ hz‘
1 @ O 1 o .77
0 O @ % 0 O — ol O >
1 7 h
0 1 0 .- 1 2 1
a) The original x space b) The new (linearly separable) 4 space

(With learning: hidden layers will learn to form useful representation

Shallow Neural Network with Hidden Units

Yy = ¢o + P1alb10 + O112] + P2albag + O21x] + Psalbsg + O31x).

Break down into two parts:

Y = Qo + @1h1 + ¢p2he + @3hs

where:

hl — 3:910 —+ 911513:

Hidden units ~ h2 = alf0 + 01
hg — a}930 + (931513:

Visualize shallow neural network

1. Compute the linear function

a)1.o b) C)
5
49-00-/ J
)
@)
010 + 0117 020 + 0212

Visualize shallow neural network "1 = a:91o + 911:1;:
ho = alfag + 021 7]

2. Pass through Relu (create hidden units) hs = alfs3g + 0312
b) c)

<4=J
5
49-00'/ J
-]
O

010 + 011 020 + 0212 030 + 0312

Visualize shallow neural network

3. Weight the hidden units

9, e) f)
4:_; __/
8-0.0;]
)
@)
10 hy = al0io + 0117] ho = alfsg + 021 2]
00 10 2000 10
8) h)
1.0
5
8-90;]
)
£ _\
lehl Q52h2

Visualize shallow neural network

4. Sum the weighted hidden units

g)

Output

Yy = ¢o+ ¢1h1 + ¢2ho + P3hs

h) 1)
1.0
00'\ | -\
o P1hq O2ha O3hs
0 10 2000 10 2000 10 20
nput, x l) nput, x
1.0
>
o
2 0.0
<4=J
-}
@)
®o+@1h1+@2ha+@3hs
o
0.0 1.0 2.0

Input, x

Visualize shallow neural network

y = ¢o + d1al010 + 0112] + P2alba0 + O212] + P3a|f30 + O317].

a) b) C)
1.0
b)) . i
4_? i i
2 0.0- .
+J 1]
>
O . i
o+ r
0.0 1.0 2.0 0.0 1.0 2.0 0.0

1 “joint” per RelLU function

Depicting shallow neural networks

h1=a
hgza

hgza

:(910 -+ (911513:
020 + 021

:(93() + (931 LC

Y = ¢o + ¢1h1 + @2ho + P3h3

With enough hidden units

... we can describe any 1D function to arbitrary accuracy

a) b) c)
1.0 - - . . - .
5 linear regions =] |10 linear regions |20 linear regions
N 4 .
” \\\ l/
N \ ’l’
) \\\ ,I’
a.0.0 \ L
+ N Vid
) \\ '/
O \\ Il
N
] __/’
'I.O T T T T T T T T T T T T T T ' ' ' ' T T T T T T T
0.0 1.0 2.00.0 1.0 2.00.0 1.0 2.0
Input, x Input, x Input, x

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function on a
compact subset of R to arbitrary precision”

Universal approximation theorem

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

Cybenko, George. "Approximation by superpositions of a sigmoidal
function." Mathematics of control, signals and systems 2.4 (1989): 3034314.

Terminology

Hidden layer

Input layer Output layer

»'7
. '."' .\\
. Weight 'or Neuron or
. Y-offsets = biases parameter hidden unit

 Slopes = weights

 Everything in one layer connected to everything in the next
= fully connected network

* Noloops = feedforward network

* Values after ReLU (activation functions) = activations

* Values before RelLU = pre-activations

* One hidden layer = shallow neural network

 More than one hidden layer = deep neural network

* Number of hidden units =~ capacity

N,

JCMERCED

Deep Neural Network

Shallow network

1 input, 4 hidden units, 2 outputs

hi1 = alfig + 0117]
ho = alfsy + O217]
hs = a|f30 + 0317]
hs = alf40 + 0417]

Network as composing function

S -

010 + 0117]
:920 -+ (921%:
:(930 + (93155‘:

:(940 + 641 SE‘

10 + Y11h1 4+ Y12hs + Y13hs)
20 + Ya1h1 + Yashs + Washs

30 + P31h1 + Y3aha + Y33hs)

Example of Multi Layer Perceptron (MLP)

Bias
vector

\

B, € R* G 3, € R? B, € R3 B, € R?

(2) ()
(=)

s S

(XX 3T<

S

WEIght > QO c R4X3 ’ Ql c R2X4

mat”XI o Hidden Hidden
Pt layer, h layer, ho

Shallow vs deep networks

dThe best results are created by deep networks with many
layers.

(150-1000 layers for most applications

Best results in]
L Computer vision
O Natural language processing All use deep networks.
U Graph neural networks But why?
U Generative models

U Reinforcement learning

—

JAbility to approximate different functions?
(JBoth obey the universal approximation theorem.

JArgument: One layer is enough, and for deep networks could
arrange for the other layers to compute the identity function

Shallow vs deep networks

ANumber of linear regions per parameter
(dDeep networks create many more regions per parameters

a) 6 Input dimension D; =1
c ® K=4
.Q
Qo ¢ K=3
) 10 =
-,
S K=2
Q K=1
N 10 A
£
3
=
10’ —-o>rr—————
0 500 1000

Number of parameters

5 layers
10 hidden units per
layer
471 parameters
161,501 linear regions

o
N

o Input dimension D; = 10

V
® K=4

K=3
K=2
Yo K =1

10

Number of regions

o 10000 " 20000

Number of parameters

5 layers
50 hidden units per
layer
10,801 parameter
>104? linear regig

Shallow vs deep networks

Fitting and generalization

Figure 20.2 MNIST-1D training. Four 1007 Thidden layer
fully connected networks were fit to 4000 |l 2 hidden layers
MNIST-1D examples with random labels o | o i ::ggzz Ilgy::z
using full batch gradient descent, He ini- o Y
tialization, no momentum or regulariza- =

tion, and learning rate 0.0025. Mod- Ir_;.r_j 1

els with 1,2.3.4 layers had 298, 100, 75, o]

and 63 hidden units per layer and 15208, S~

15210, 15235, and 15139 parameters, re- 0'

spectively. All models train successfully, 0 ') Epo c'h ' 500K
but deeper models require fewer epochs. P

N,

JCMERCED

ORN

Training Perceptron - First Attempt

single example loss

wh = argm“ifn Z L(Yia[f(wvxi)b

prediction on example X'

1Etrain
\ J
|

L(w)

total loss

vector representation of w

Consider perceptron: f(w,x) = u(W' X) WT = [wo, Wi, ..., W]

XT = (1, X1, X2, vy Xop |

homogeneous representation of x

lverson
brackets

Classification error loss: L(y,f) = |y # {]

perceptron’s prediction
on example X'

= LW) = Y ' AuW X

\ }
|

classification error counts
since both y', u € {0,1}

extreme case of (so-called) vanishing gradients

Zero Gradients Problem

Classification error loss function L(W) Is piecewise constant:

+ L(W) error count loss

—_—y
1

——
1

1 1
——

l - W
W*
(optimal weights)

NOTE: in this case gradient VL is always either zero or does not exist

“error count” loss function cannot be optimized via gradient descent

Work-around for Zero Gradients

Perceptron: f(w,x') = w(WTX") ~ o(WTX?
approximate decision function u using its softer version (relaxation)

u(t) - unit step function
1 (a.k.a. Heaviside function)

6(t) = u(t)

6(t) - sigmoid function

1
t t) =
: : o (1) 1 + exp(—t)

Work-around for Zero Gradients

Perceptron: f(w,x') = w(WTX") ~ o(WTX?
approximate decision function u using its softer version (relaxation)

R u(t) - unit step function

1 (a.k.a. Heaviside function)
1-6(1) 6() = u® 6(t) - sigmoid function
1
t o(t) :=
: g (t) 1 + exp(—t)

Relaxed predictions are often interpreted as prediction “probabilities”
Pr(x’ € Classl | W) = o(W'X")
Pr(x' € ClassO | W) = 1—o(WTX?) = o(-WTX?)

Training Perceptron - Second Attempt

Perceptron approximation: f(w,x") = u(W X" ~ o(W'X")

y €{0,1}

. Vo
Classification error loss: L(y,a)=1y = 0]
now makes no sense at all

relaxed decision function (sigmoid)
never returns exactly 0 or 1

roB()

v

Quadratic Loss

Perceptron approximation: f(w,x') = u(W'X") ~

y €{0,1}
.
Consider quadratic loss: L(y,0) = (y —0)?

!

NOTE: N 6(t)

Loss L(y,oc(W'X)) 1
IS now differentiable
with respectto W 0

because L(y,o) is
differentiable w.r.t. 0

oW X"

Quadratic Loss

Perceptron approximation: f(w,x") = u(W X" ~ o(W'X")

y €{0,1}

|
Consider quadratic loss: L(y,o) = (y — 0)2

misclassified example

Quadratic Loss

Perceptron approximation: f(w,x") = u(W X" ~ o(W'X")

y €{0,1}

|
Consider quadratic loss: L(y,o) = (y — 0)2

(y? = o(W'X7))

v

another misclassified example

Quadratic Loss

Perceptron approximation: f(w,x') = u(W'X") ~ o(W'X")
y € 10,1}

|
Consider quadratic loss: L(y,o) = (y — 0)2

(y? = o(W'X7))

NOTE:

loss function encourages W s.t.
correctly classified points are moved

whxs wtxe
further from the decision boundary, yv' =0 y'=1

le. wixt vTXxi . .

le. wixX*>0 and WiX <0 correctly classified examples

Quadratic Loss

Perceptron approximation: f(w,x") = u(W X" ~ o(W'X")

Consider quadratic loss: L(y,o) = (y — 0)2

approximation for
perceptron’s prediction
on example x'

Total loss = L(W) = Z (yi_[a(WTXij)z

tEtrain
1]

|

Sum of Squared Differences
(SSD)

(binary case)

Cross-Entropy LOSS (related to logistic regression loss)

Perceptron approximation: f(w,x") = u(W X" ~ o(W'X")

Consider two probability distributions
over two classes (e.g. bassorsalmon) : (y,1—y) and (o,1—0)

bass salmon ‘

Pr(xi € Classl | W) = U(WTXi)

Pr(xi € Class0 | W) 1 — O'(WTXi)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)
H(p,q):==— Y pi Ingy
k

(binary case)

Cross-Entropy LOSS (related to logistic regression loss)

Perceptron approximation: f(w,x') = u(W'X") ~ o(W'X")

Consider two probability distributions
over two classes (e.g. bassorsalmon) : (y,1—y) and (o,1—0)

bass salmon

(binary)
Cross-entropy loss: | L(y,o0) = —-ylne — (1—y)In(l— o)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)
H(p,q):==— Y pi Ingy
k

(binary case)

Cross-Entropy LOSS (related to logistic regression loss)

Perceptron approximation: f(w,x') = u(W'X") ~ o(W'X")

Consider two probability distributions
over two classes (e.g. bassorsalmon) : (y,1—y) and (o,1—0)

bass salmon

(binary)
Cross-entropy loss: | L(y,o0) = —-ylne — (1—y)In(l— o)

Each data label y provides “deterministic” distribution (y,1—y) that is
either (1,0) or (0,1). This implies an equivalent alternative expression:

B —Ino ify=1
L{y,o) = { —In(l—0) ify=0

(binary case)

Cross-Entropy LOSS (related to logistic regression loss)

Perceptron approximation: f(w,x") = u(W X" ~ o(W'X")

Consider two probability distributions
over two classes (e.g. bassorsalmon) : (y,1—y) and (o,1—0)

bass salmon

Total loss: Z (—yian(WTXi) - (1—yi)ln(1—a(WTXi)))
1Etrain
= | LW) == > heW'X) = Y h(l-ocW'X")
t€train t€train
y'=1 y'=0 |

|
\ J

Y
sum of Negative Log-Likelihoods (NLL)

Towards Multi-label Classification

Remember: basic perceptron U(WTX)
(X)—+—
(- e
@—»@% " 1Lor0
X)lig— = \| label

Meighted binary

@ sum decision
o

binary classification

Towards Multi-label Classification

Remember: “relaxed” perceptron 6(WTX)

@_
-
@_
_ ighted bi
weighte Inary
% sum decision

wy

wTx

{

binary classification

c(WTX) e[0,1]

+—>I——>

probability
distribution

0, 1-6

not bass

Towards Multi-label Classification

This is used for
ually non-exclusjye
Categorieg

o(W{X) e[0,1]

use K linear transforms W, and sigmoids 6(WTX) mu

“probability”

of class 1

o(Wy X) €10,1]
e
“probability”

of class 2

o(WiX) e [0,1]
ﬁ
“probability”

of class 3

multi-label classification

Such “probability scores” 6, ©,, ..., 6 over K classes do notadd up to 1

Common Approach: Soft-Max

use K linear transforms W, and soft-max & (W X')

This is used for
mutually exclusive
categories
(only one can be true)

(61,02, ...,0K)
ﬁ

probability
some form of . . .
normalization dlStn bUt|0n

(

multi-label classification

Notation: K rows of matrix \\V are vectors W, so that vector WX has elements W, X

basssalmon sturgeon

Soft-Max Function & : R® — Ak

7 oexpal)
- 1\ Zkexpak
a 2
, exp a
‘ > expaF
K
\a) exp a’
K > expak
acR k
< N\ Y,
5’(&) ~ AK

Example:

exp(-3)

exp(—3)+exp(2)+exp(1)
exp(2)

exp(—3)+exp(2)+exp(1)
exp(1)

exp(-3)+exp(2)+exp(l) |

- 0.005 |
= 0.7275

0.2676

Soft-max normalizes logits vector a converting it to distribution over classes

Soft-Max Function & : R® — Ak

NN Example: 7 expWIX O\

(_expa k\ > exp WX
(al N Zk expa /WFX\ exp WzTX
P exp a? wIx > pexpWIX
>y expak
oK - WEX exp Wi X
- J €xXp d A ~ Zk exp WEX
ac RK sz exp ak/ WY \ W
_ a(W X)
a(a) ~ AK

(5‘1, 5‘2, ...,O‘K)

basssalmon sturgeon

Soft-max normalizes logits vector a converting it to distribution over classes

Soft-Max Function & : R® — Ak

NOTE:
soft-max generalizes sigmoid
to multi-class predictions. Indeed,
consider binary perceptron with scalar
linear discriminator W TX (e.g. for class 1)

1
o(WTX) =
sigmoid 14 e-WHX

_ eiW" X _ 5 %WTX
T eIWTX | —iwTx T - _§WTX

class 1 output of soft-max for
a combination of two linear predictors:
LW TX for class 1 and - ¥2W TX for class =1 (class 0)

NN Example: 7 expWIX O\

exp W1 X
N D), €XDP Tk
Wi X exp W5 X
WgX exp WgX

- - S pexpWIX

_ _/

WX c(WX)

(61,02, ...,0K)

basssalmon sturgeon

Soft-max normalizes logits vector a converting it to distribution over classes

(general multi-class case)

Cross-Entropy Loss

K-label perceptron’s output: 0 (WX 7’) for example X k-th

Multi-valued label y* = k gives one-hot distribution ¥ = (0, 0;@ 0,...,0)

Consider two probability distributions
over K classes (e.g. bass, salmon, sturgeon): §° and (01,02,03,...,0k)

e

basssalmon sturgeon PF(XZ < Class k ’ W) — 6-/€(WX%)

cross entropy
Total loss: L(W) = » Y —yilnap(WX?)

i€train k

—) Ingu(WX?)

1€train

= L(W)

sum of Negative Log-Likelihoods (NLL)

soft-max vs arg-max
Multi-label (linear) Classification

Define K linear transforms, from features X to K “logits”
logit, (X)=W;!X for k=1,2,...K

e arg-max assigns X to class k corresponding to the largest logit
arg m]?X{WgX}

« Let R, be decision region for class k

all points X assigned to class k by arg-max R
® 1l e

wrx>wSx °

soft-max & {W, X} softens WX > Wy X SR
hard arg-max predictions | WX > Wy X
similarly to how sigmoid ° , .
softens unit-step function P
Wi X > WX
o o

Summary

Shallow neural network

dUniversal function approximation theorem

(A Deep neural network
A Multi layer perceptron

Loss

dSigmoid, Softmax
Cross entropy loss, quadratic loss

	Slide 1
	Slide 2: Recap: Principal Component Analysis (PCA)
	Slide 3: Recap: Principal Component Analysis (PCA)
	Slide 4
	Slide 5: Today’s topic
	Slide 6
	Slide 7: Linear Classification
	Slide 8: Linear Classification (perceptron)
	Slide 9: Neural Unit
	Slide 10: Non-linear Activation Function
	Slide 11: Final function the unit is computing
	Slide 12: Neural Unit
	Slide 13: An example
	Slide 14: Other non-linear activation function
	Slide 15: Perceptron
	Slide 16: Perceptron from the 50’s and 60’s
	Slide 17: The XOR problem
	Slide 18: Easy to build AND or OR with perceptron
	Slide 19: Is it possible to capture XOR with perceptrons?
	Slide 20: Decision boundaries
	Slide 21: Solution to the XOR problem
	Slide 22: The hidden representation h
	Slide 23: Shallow Neural Network with Hidden Units
	Slide 24: Visualize shallow neural network
	Slide 25: Visualize shallow neural network
	Slide 26: Visualize shallow neural network
	Slide 27: Visualize shallow neural network
	Slide 28: Visualize shallow neural network
	Slide 29: Depicting shallow neural networks
	Slide 30: With enough hidden units
	Slide 31: Universal approximation theorem
	Slide 32: Universal approximation theorem
	Slide 33: Terminology
	Slide 34
	Slide 35: Shallow network
	Slide 36: Network as composing function
	Slide 37: Example of Multi Layer Perceptron (MLP)
	Slide 38: Shallow vs deep networks
	Slide 39: Shallow vs deep networks
	Slide 40: Shallow vs deep networks
	Slide 41
	Slide 42: Training Perceptron - First Attempt
	Slide 43: extreme case of (so-called) vanishing gradients Zero Gradients Problem
	Slide 44: Work-around for Zero Gradients
	Slide 45: Work-around for Zero Gradients
	Slide 46: Training Perceptron - Second Attempt
	Slide 47: Quadratic Loss
	Slide 48: Quadratic Loss
	Slide 49: Quadratic Loss
	Slide 50: Quadratic Loss
	Slide 51: Quadratic Loss
	Slide 52: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 53: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 54: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 55: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 56: Towards Multi-label Classification
	Slide 57: Towards Multi-label Classification
	Slide 58: Towards Multi-label Classification
	Slide 59: Common Approach: Soft-Max
	Slide 60
	Slide 61
	Slide 62
	Slide 63: (general multi-class case) Cross-Entropy Loss
	Slide 64
	Slide 65: Summary

