
CSE 176 Introduction to Machine Learning
Lecture 9: Neural Network

Some slides from Simon Prince, Dan Jurafsky, Roni Sengupta, and Olga Veksler

Recap: Principal Component Analysis (PCA)

Andrew Ng

Recap: Principal Component Analysis (PCA)

)Reduce from 2-‐dimension to 1-‐dimension:Find a direction (a vector

onto which to project the data soas to minimize the projection error.

Reduce from n-‐dimension to k-‐dimension: Find vectors

onto which to project the data,so as to minimize the projection error.

Andrew Ng

Today’s topic

❑Shallow Neural Network

❑Deep Neural Network

❑Losses

Shallow Neural Network

Linear Classification

❑For example: fish classification - salmon or sea bass?

❑extract two features, fish length and fish brightness

❑yi is the output (label or target) for example xi

salmon salmonsea bass sea bass

x1 x2 x3 x4

=

7.5

3.3

=

7.8

3.6

=

7.1

3.2

=

0.7

4.6

y1=0 y2=1 y3 = 0 y4=1

feature

vector

individual

features
e.g. fish length

and brightness

Linear Classification (perceptron)

❑For two class problem and 2-dimensional data (feature vectors)

x1

x2

w0+w1x1+w2x2

good

separation

by simple

threshold

* * *

“good”

linear transformation

from 2D space to 1D
1

0

f(w,x) = u (w0+w1x1+w2x2) f(w,x) ϵ {0,1}thresholding

can be formally

represented by this

prediction function

0

1

0

u(t)

t

unit step function
(a.k.a. Heaviside function)

label

label

Neural Unit

• Take weighted sum of inputs, plus a bias

• Instead of just using z, we'll apply a nonlinear
activation function f:

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes

a set of real valued numbers as input, performs some computation on them, and

produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-

tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be

represented as:

z= b+
X

i

wixi (7.1)

Often it’smoreconvenient to expressthisweighted sum using vector notation; recall

from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector

x, and we’ ll replace the sum with theconvenient dot product:

z= w·x+ b (7.2)

Asdefined in Eq. 7.2, z is just a real valued number.

Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as

the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for thenodeisin fact thefinal output of thenetwork, which we’ ll generally

call y. So thevalue y isdefined as:

y = a = f (z)

We’ ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,

and the rectified linear ReLU) but it’s pedagogically convenient to start with the

sigmoid function since wesaw it in Chapter 5:sigmoid

y = s (z) =
1

1+ e− z
(7.3)

Thesigmoid (shown in Fig. 7.1) hasanumber of advantages; it maps theoutput

into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s

differentiable, which aswe saw in Section ?? will behandy for learning.

Figure7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is

nearly linear around 0 but outlier valuesget squashed toward 0 or 1.

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

Thebuilding block of aneural network isasingle computational unit. A unit takes

a set of real valued numbers as input, performs some computation on them, and

producesan output.

At its heart, aneural unit is taking aweighted sum of its inputs, with one addi-

tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be

represented as:

z= b+
X

i

wixi (7.1)

Often it’smoreconvenient toexpressthisweighted sumusing vector notation; recall

from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ ll talk about z in terms of aweight vector w, ascalar bias b, and an input vector

x, and we’ ll replace thesum with theconvenient dot product:

z= w·x+ b (7.2)

Asdefined in Eq. 7.2, z is just areal valued number.

Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as

the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for thenodeisin fact thefinal output of thenetwork, whichwe’ ll generally

call y. So thevaluey isdefined as:

y= a= f (z)

We’ ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,

and the rectified linear ReLU) but it’s pedagogically convenient to start with the

sigmoid function sincewesaw it in Chapter 5:sigmoid

y= s (z) =
1

1+ e−z
(7.3)

Thesigmoid (shown in Fig. 7.1) hasanumber of advantages; it maps theoutput

into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s

differentiable, which aswesaw in Section ?? will behandy for learning.

Figure7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is

nearly linear around 0 but outlier valuesget squashed toward 0 or 1.

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

Thebuilding block of aneural network isasingle computational unit. A unit takes

a set of real valued numbers as input, performs some computation on them, and

producesan output.

At its heart, aneural unit is taking aweighted sum of its inputs, with one addi-

tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be

represented as:

z= b+
X

i

wixi (7.1)

Often it’smoreconvenient toexpressthisweighted sumusingvector notation; recall

from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ ll talk about z in termsof aweight vector w, ascalar biasb, and an input vector

x, and we’ ll replace thesum with theconvenient dot product:

z= w·x+ b (7.2)

Asdefined in Eq. 7.2, z is just areal valued number.

Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as

the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for thenodeisinfact thefinal output of thenetwork, whichwe’ ll generally

call y. So thevaluey isdefined as:

y= a= f (z)

We’ ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,

and the rectified linear ReLU) but it’s pedagogically convenient to start with the

sigmoid function sincewesaw it in Chapter 5:sigmoid

y= s (z) =
1

1+ e−z
(7.3)

Thesigmoid (shown in Fig. 7.1) hasanumber of advantages; it mapstheoutput

into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s

differentiable, which aswesaw in Section ?? will behandy for learning.

Figure7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is

nearly linear around 0 but outlier valuesget squashed toward 0 or 1.

Non-linear Activation Function

Sigmoid

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes

a set of real valued numbers as input, performs some computation on them, and

produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-

tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be

represented as:

z= b+
X

i

wixi (7.1)

Often it’smoreconvenient to expressthisweighted sum using vector notation; recall

from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ ll talk about z in terms of aweight vector w, a scalar bias b, and an input vector

x, and we’ ll replace the sum with theconvenient dot product:

z= w·x+ b (7.2)

Asdefined in Eq. 7.2, z is just areal valued number.

Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as

the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for thenodeisin fact thefinal output of thenetwork, which we’ ll generally

call y. So thevalue y isdefined as:

y = a = f (z)

We’ ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,

and the rectified linear ReLU) but it’s pedagogically convenient to start with the

sigmoid function since wesaw it in Chapter 5:sigmoid

y = s (z) =
1

1+ e− z
(7.3)

Thesigmoid (shown in Fig. 7.1) hasanumber of advantages; it maps theoutput

into the range [0,1], which is useful in squashing outliers toward 0 or 1. And it’s

differentiable, which aswesaw in Section ?? will behandy for learning.

Figure7.1 The sigmoid function takes a real value and maps it to the range [0,1]. It is

nearly linear around 0 but outlier valuesget squashed toward 0 or 1.

Final function the unit is computing 7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us theoutput of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as theactivation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid isnot commonly used as an activation function. A function

that isvery similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of thesigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

Neural Unit

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights

Input layer

Weighted sum

Non-linear activation function

Output value

bias

An example

Suppose a unit has:

w = [0.2,0.3,0.9]

b = 0.5

What happens with input x:

x = [0.5,0.6,0.1]

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as theactivation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh isavariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us theoutput of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as theactivation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid isnot commonly used asan activation function. A function

that isvery similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh isavariant of thesigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as theactivation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that isvery similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh isavariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent as a

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh

tanh isa variant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes theresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that we represent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentire network, leaving a as theactivation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that isvery similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x is positive, and 0 otherwise:

y = max(x,0) (7.6)

Other non-linear activation function

14

tanh ReLU
Rectified Linear Unit

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesus the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes the resulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesustheoutput of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows afinal schematic of abasic neural unit. In this example the unit

takes3 input values x1,x2, and x3, and computes aweighted sum, multiplying each

valueby aweight (w1, w2, andw3, respectively), addsthemtoabiastermb, and then

passestheresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputsx1, x2, and x3 (and abiasb that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of theentirenetwork, leaving a astheactivation of an individual node.

Let’swalk through an example just to get an intuition. Let’ssuppose wehavea

unit with thefollowing weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would thisunit do with thefollowing input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y= s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e−0.87
= .70

In practice, thesigmoid isnot commonly used asan activation function. A function

that isvery similar but almost alwaysbetter is thetanh function shown in Fig. 7.3a;tanh

tanh isavariant of thesigmoid that ranges from -1 to +1:

y=
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU

when z ispositive, and 0 otherwise:

y= max(z,0) (7.6)

Most Common:

Perceptron

• A very simple neural unit

• Binary output (0 or 1)

• No non-linear activation function

Perceptron from the 50’s and 60’s

https://www.youtube.com/watch?v=cNxadbrN_aI&t=71s

https://www.youtube.com/watch?v=cNxadbrN_aI&t=71s

The XOR problem

❑Can perceptron compute simple functions of input?

Minsky and Papert (1969)

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

Easy to build AND or OR with perceptron

AND OR

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

Is it possible to capture XOR with perceptrons?

❑Pause the lecture and try for yourself!

❑No!

❑Why? Perceptrons are linear classifiers

Decision boundaries

0

0 1

1

x1

x2

0

0 1

1

x1

x2

0

0 1

1

x1

x2

a) x1 AND x2 b) x1 OR x2 c) x1 XOR x2

?

XOR is not a linearly separable function!

Solution to the XOR problem

❑XOR can't be calculated by a single perceptron

❑XOR can be calculated by a layered network of units.

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

4 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

(a) (b)

Figure7.3 The tanh and ReLU activation functions.

These activation functions have different properties that make them useful for

different languageapplications or network architectures. For example, thetanh func-

tion has the nice properties of being smoothly differentiable and mapping outlier

values toward themean. The rectifier function, on theother hand hasniceproperties

that result from it being very close to linear. In the sigmoid or tanh functions, very

high values of z result in values of y that are saturated, i.e., extremely close to 1,saturated

and have derivatives very close to 0. Zero derivatives cause problems for learning,

because as we’ ll see in Section 7.4, we’ ll train networks by propagating an error

signal backwards, multiplying gradients (partial derivatives) from each layer of the

network; gradients that arealmost 0 cause theerror signal to get smaller and smaller

until it is too small to be used for training, aproblem called the vanishing gradientvanishing
gradient

problem. Rectifiers don’ t have this problem, since the derivative of ReLU for high

values of z is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-

works, as with the real neurons that inspired them, comes from combining these

units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was

the proof by Minsky and Papert (1969) that a single neural unit cannot compute

some very simple functions of its input. Consider the task of computing elementary

logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are

the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is avery simple neuralperceptron

unit that has abinary output and does not haveanon-linear activation function. The

ReLU

ReLU

The hidden representation h

0

0 1

1

x1

x2

a) The original x space

0

0 1

1

h1

h2

2

b) The new (linearly separable) h space

x1 x2

h1 h2

y1

+1

1 -11 1

1 -2

01

+1

0

(With learning: hidden layers will learn to form useful representations)

Shallow Neural Network with Hidden Units

Break down into two parts:

where:

Hidden units

Visualize shallow neural network

1. Compute the linear function

Visualize shallow neural network

2. Pass through Relu (create hidden units)

Visualize shallow neural network

3. Weight the hidden units

Visualize shallow neural network

4. Sum the weighted hidden units

Visualize shallow neural network

Example shallow network = piecewise linear functions
1 “joint” per ReLU function

Depicting shallow neural networks

Each parameter multiplies its source and adds to its target

With enough hidden units

❑… we can describe any 1D function to arbitrary accuracy

Universal approximation theorem

“a formal proof that, with enough hidden units, a shallow
neural network can describe any continuous function on a

compact subset of to arbitrary precision”

Universal approximation theorem

Cybenko, George. "Approximation by superpositions of a sigmoidal
function." Mathematics of control, signals and systems 2.4 (1989): 303-314.

Terminology

• Y-offsets = biases
• Slopes = weights
• Everything in one layer connected to everything in the next

= fully connected network
• No loops = feedforward network
• Values after ReLU (activation functions) = activations
• Values before ReLU = pre-activations
• One hidden layer = shallow neural network
• More than one hidden layer = deep neural network
• Number of hidden units ≈ capacity

Deep Neural Network

Shallow network

❑1 input, 4 hidden units, 2 outputs

Network as composing function

Example of Multi Layer Perceptron (MLP)

Bias
vector

Weight
matrix

Shallow vs deep networks

❑The best results are created by deep networks with many
layers.
❑50-1000 layers for most applications

❑Best results in
❑Computer vision

❑Natural language processing

❑Graph neural networks

❑Generative models

❑Reinforcement learning

❑Ability to approximate different functions?

❑Both obey the universal approximation theorem.

❑Argument: One layer is enough, and for deep networks could
arrange for the other layers to compute the identity function.

All use deep networks.
But why?

Shallow vs deep networks

❑Number of linear regions per parameter
❑Deep networks create many more regions per parameters

5 layers
10 hidden units per

layer
471 parameters

161,501 linear regions

5 layers
50 hidden units per

layer
10,801 parameters

>1040 linear regions

Shallow vs deep networks

❑Fitting and generalization

Loss

Training Perceptron - First Attempt

classification error counts

since both yi , u ϵ {0,1}

total loss

Consider perceptron:

perceptron’s prediction

on example xi

homogeneous representation of x

vector representation of w

single example loss

prediction on example xi

Classification error loss:

Iverson

brackets

extreme case of (so-called) vanishing gradients

Zero Gradients Problem

“error count” loss function cannot be optimized via gradient descent

W

L(W)

W*

(optimal weights)

NOTE: in this case gradient is always either zero or does not exist

error count loss

Classification error loss function L(W) is piecewise constant:

Perceptron:

Work-around for Zero Gradients

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

approximate decision function u using its softer version (relaxation)

Ϭ(t) ≈ u(t)

Work-around for Zero Gradients

1

0
t

u(t) - unit step function
(a.k.a. Heaviside function)

Ϭ(t) - sigmoid function

Relaxed predictions are often interpreted as prediction “probabilities”

1-Ϭ(t)

Perceptron:

approximate decision function u using its softer version (relaxation)

Ϭ(t) ≈ u(t)

Training Perceptron - Second Attempt

Perceptron approximation:

relaxed decision function (sigmoid)

never returns exactly 0 or 1

1

0

Ϭ(t)

now makes no sense at all
Classification error loss:

Quadratic Loss

Perceptron approximation:

1

0

Consider quadratic loss:

Ϭ(t)NOTE:

Loss

is now differentiable

with respect to

because is

differentiable w.r.t.

1

0

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

misclassified example

Ϭ(t)

1

0

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

another misclassified example

Ϭ(t)

1

0

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

correctly classified examples

Ϭ(t)

NOTE:
loss function encourages W s.t.

correctly classified points are moved

further from the decision boundary,

i.e. and .

Quadratic Loss

Perceptron approximation:

Consider quadratic loss:

Sum of Squared Differences

(SSD)

Total loss

approximation for

perceptron’s prediction

on example xi

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Perceptron approximation:

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

salmonbass

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

(binary)

Cross-entropy loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Distance between two distributions can be evaluated via cross-entropy
(equivalent to KL divergence for fixed target)

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

(binary)

Cross-entropy loss:

Each data label y provides “deterministic” distribution that is

either (1,0) or (0,1). This implies an equivalent alternative expression:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

Perceptron approximation:

Consider two probability distributions

over two classes (e.g. bass or salmon) : and

sum of Negative Log-Likelihoods (NLL)

Total loss:

salmonbass

(binary case)

Cross-Entropy Loss (related to logistic regression loss)

+

w1

w2

w3

w4

wm

…
weighted

sum

x2

x4

…

xm

x1

x3

binary

decision

label

Towards Multi-label Classification

Remember: basic perceptron

W

binary classification

u(wTx)

w1

w2

w3

w4

wm

…
weighted

sum

x2

x4

…

xm

x1

x3

binary

decision

Ϭ(wTx)

Towards Multi-label Classification

binary classification

Remember: “relaxed” perceptron

+
probability

W

salmonbass

not bass

distribution

(Ϭ, 1-Ϭ)

Towards Multi-label Classification

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk and sigmoids

+

+

+

W1

W2

W3

“probability”
of class 1

“probability”
of class 2

“probability”
of class 3

Ϭ(wTx)

Such “probability scores” Ϭ1, Ϭ2, …, ϬK over K classes do not add up to 1

Common Approach: Soft-Max

x2

x4

…

xm

x1

x3

multi-label classification

use K linear transforms Wk and soft-max

+

+

+

W1

W2

W3

probability

distribution

salmonbass sturgeon

Notation: K rows of matrix W are vectors Wk so that vector WX has elements

Ϭ

This is used for

mutually exclusive

categories

(only one can be true)

some form of

normalization

=

26760

72750

0050

.

.

.

()
() () ()

()
() () ()

()
() () ()

++−

++−

++−

−

123

1exp

123

2exp

123

3exp

expexpexp

expexpexp

expexpexp

−

1

2

3

softmax

Soft-Max Function

Example:

Soft-max normalizes logits vector a converting it to distribution over classes

softmax
…

…

softmax

Soft-Max Function

… softmax …

NN Example:

salmonbass sturgeon

…
…

Soft-max normalizes logits vector a converting it to distribution over classes

Soft-Max Function

… softmax …

NN Example:

salmonbass sturgeon

NOTE:

soft-max generalizes sigmoid

to multi-class predictions. Indeed,

consider binary perceptron with scalar

linear discriminator W TX (e.g. for class 1)

sigmoid

class 1 output of soft-max for

a combination of two linear predictors:

½W TX for class 1 and - ½W TX for class ¬1 (class 0)

Soft-max normalizes logits vector a converting it to distribution over classes

Consider two probability distributions

over K classes (e.g. bass, salmon, sturgeon) : and

K-label perceptron’s output: for example

sum of Negative Log-Likelihoods (NLL)

salmonbass sturgeon

Multi-valued label gives one-hot distribution

k-th

index

Total loss:

cross entropy

(general multi-class case)

Cross-Entropy Loss

Define K linear transforms, from features X to K “logits”

 for k = 1, 2, … K

R1

R2

R3

soft-max vs arg-max

Multi-label (linear) Classification

• arg-max assigns X to class k corresponding to the largest logit

• Let Rk be decision region for class k
all points X assigned to class k by arg-max

soft-max softens

hard arg-max predictions

similarly to how sigmoid

softens unit-step function

Summary

❑Shallow neural network

❑Universal function approximation theorem

❑Deep neural network
❑Multi layer perceptron

❑Loss
❑Sigmoid, Softmax

❑Cross entropy loss, quadratic loss

	Slide 1
	Slide 2: Recap: Principal Component Analysis (PCA)
	Slide 3: Recap: Principal Component Analysis (PCA)
	Slide 4
	Slide 5: Today’s topic
	Slide 6
	Slide 7: Linear Classification
	Slide 8: Linear Classification (perceptron)
	Slide 9: Neural Unit
	Slide 10: Non-linear Activation Function
	Slide 11: Final function the unit is computing
	Slide 12: Neural Unit
	Slide 13: An example
	Slide 14: Other non-linear activation function
	Slide 15: Perceptron
	Slide 16: Perceptron from the 50’s and 60’s
	Slide 17: The XOR problem
	Slide 18: Easy to build AND or OR with perceptron
	Slide 19: Is it possible to capture XOR with perceptrons?
	Slide 20: Decision boundaries
	Slide 21: Solution to the XOR problem
	Slide 22: The hidden representation h
	Slide 23: Shallow Neural Network with Hidden Units
	Slide 24: Visualize shallow neural network
	Slide 25: Visualize shallow neural network
	Slide 26: Visualize shallow neural network
	Slide 27: Visualize shallow neural network
	Slide 28: Visualize shallow neural network
	Slide 29: Depicting shallow neural networks
	Slide 30: With enough hidden units
	Slide 31: Universal approximation theorem
	Slide 32: Universal approximation theorem
	Slide 33: Terminology
	Slide 34
	Slide 35: Shallow network
	Slide 36: Network as composing function
	Slide 37: Example of Multi Layer Perceptron (MLP)
	Slide 38: Shallow vs deep networks
	Slide 39: Shallow vs deep networks
	Slide 40: Shallow vs deep networks
	Slide 41
	Slide 42: Training Perceptron - First Attempt
	Slide 43: extreme case of (so-called) vanishing gradients Zero Gradients Problem
	Slide 44: Work-around for Zero Gradients
	Slide 45: Work-around for Zero Gradients
	Slide 46: Training Perceptron - Second Attempt
	Slide 47: Quadratic Loss
	Slide 48: Quadratic Loss
	Slide 49: Quadratic Loss
	Slide 50: Quadratic Loss
	Slide 51: Quadratic Loss
	Slide 52: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 53: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 54: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 55: (binary case) Cross-Entropy Loss (related to logistic regression loss)
	Slide 56: Towards Multi-label Classification
	Slide 57: Towards Multi-label Classification
	Slide 58: Towards Multi-label Classification
	Slide 59: Common Approach: Soft-Max
	Slide 60
	Slide 61
	Slide 62
	Slide 63: (general multi-class case) Cross-Entropy Loss
	Slide 64
	Slide 65: Summary

