
CSE 176 Introduction to Machine Learning
Midterm Review







Different AI systems



Major Types of machine learning

Supervised learning: Given pairs of input-output, learn to 
map the input to output
Image classification

Speech recognition

Regression (continuous output)

Unsupervised learning: Given unlabeled data, uncover the 
underlying structure or distribution of the data
Clustering

Dimensionality reduction

Reinforcement learning: training an agent to make decisions 
within an environment to maximize a cumulative reward

Game playing (e.g., AlphaGo)

Robot control



Linear Algebra, Probability and Statistics



Matrix inverse

❑For a 2x2 matrix:

❑The inverse is :

❑Quiz: find the inverse of ABT

❑Answer:



Norms

• Used for measuring the size of a vector

• Norms map vectors to non-negative values

• Norm of vector x=[x1,..,xn]T is distance from origin to x

– It is any function    f that satisfies:

Slide from S. Srihari 



Lp Norm

• Definition:

– L2 Norm

• Called Euclidean norm
– Simply the Euclidean distance 

between the origin and the point x

– written simply as | |x | |

– Squared Euclidean norm is same as xTx

• Sum of absolute value for each xi

– L∞ Norm • Called max norm

Slide from S. Srihari 

– L1 Norm



Eigendecomposition

• Suppose that matrix Ahas n linearly 

independent eigenvectors {v(1),..,v(n)} with 

eigenvalues {λ1,..,λn}

• Concatenate eigenvectors to form matrix V

• Concatenate eigenvalues to form vector

λ=[λ1,..,λn]

• Eigendecomposition of A is given by

A=Vdiag(λ)V-1

Slide from S. Srihari 



Chain rule of conditional probability

• Any probability distribution over many variables can

be decomposed into conditional distributions over

only one variable

• An example with three variables

Slide from S. Srihari 



Independence and conditional independence

• Independence:

– Two variables x and y are independent if their probability

distribution can be expressed as a product of two factors,

one involving only x and the other involving only y

• Conditional Independence:

– Two variables x and y are independent given variable z, if

the conditional probability distribution over x.    and y 

factorizes in this way for every z

Slide from S. Srihari 



Bayes’s rule

❑Bayes' theorem (alternatively Bayes' law or Bayes' 

rule), named after Thomas Bayes, describes 

the probability of an event, based on prior knowledge of 

conditions that might be related to the event.

❑For example, if the risk of health problems is known to 

increase with age, Bayes' theorem allows the risk to an 

individual of a known age to be assessed more 

accurately by conditioning it relative to their age.

Slide from S. Srihari 

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)


Supervised Learning: Classification and 
Regression



Training/Testing Phases Illustrated

label 

prediction

training 
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training examples

Training
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feature 
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Learned 

model h



Loss function

Training dataset of I pairs of input/output examples

Loss function or cost function measures how bad model is:

𝚯 is also a common notation for weights

{xn, yn}N
n = 1

w* = arg minw ΣnL(yn, h(w,xn))



Supervised ML algorithm



Linear classifier example: perceptron



Underfitting→Overfitting

underfitting “just right” overfitting

 high training error

 high test error

 low training error

 low test error

 low training error

 high test error



Model selection and generalization

❑Machine learning problems (classification, regression 

and others) are typically ill-posed : the observed data is 

finite and does not uniquely determine the classification 

or regression function.

❑How to choose the right inductive bias, in particular the 

right hypothesis class? This is the model selection 

problem.



Cross Validation

❑Training set:
❑Used to train, i.e., to fit a hypothesis h ∈ Hi.
❑Optimize parameters of h given the model structure and 

hyperparameters.
❑Usually done with an optimization algorithm (the learning algorithm). 

❑ Validation set:
❑Used to minimize the generalization error.
❑Optimize hyperparameters or model structure.
❑Usually done with a “grid search”. Ex: try all values of H ∈ {10, 50, 

100} and λ ∈ {10−5, 10−3, 10−1}.

❑Test set:
❑Used to report the generalization error.
❑We optimize nothing on it, we just evaluate the final model on it



KNN Classifier



K nearest neighbor algorithm

❑Nearest neighbor often instable (noise)

❑For a test input x, assign the most common label amongst 
its k most similar training inputs



Effect of K

❑Which partition do you prefer?  Why?

❑𝐾controls the degree of smoothing.

❑What if K=N(number of data points)?

𝑘 = 1 𝑘 = 3 𝑘 = 31



Choosing K

❑How should we choose K?
❑Select K with highest test accuracy

❑Can we simply split to training and testing set?

❑Solution: split data into training, validation and test sets
❑Training set: compute nearest neighbour

❑Validation set: optimize hyperparameters such as K

❑Test set: measure performance





KNN for high-dimensional data

❑Can we use KNN classifier for high-dimensional data?

❑Assumption for KNN classifier to work:
❑K nearest neighbors are nearby

❑Are K nearest neighbors nearby for d>>0?



Clustering



K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each sample to the closest mean

• Iterate until clusters stop changing
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K-means objective

=),( SE + +

(SSD)
: extra parameters (means)



Squared distance as log-likelihood

single Gaussian

single Gaussian of fixed covariance
Assume K=2,



K-means as variance clustering criteria
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NOTE: besides changing the distortion measure, there are different generalizations of K-means 

            requiring other interpretations of SSE objective

can use different “distortion” measures

(generalization) 

Distortion Clustering

K-modes

K-means

K-medians

squared
L2 norm

absolute
L2 norm

interpretation of parameters  μkexamples of distortion measure d|||| 



Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

1. Initialize random seed, and fixed window

2. Calculate center of gravity ‘x’ of the window (the“mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence
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Mean Shift as K-modes
[Salah, Mitche, Ben-Ayed 2010]

img005

Mean-shift segmentation relates to 
distortion clustering with a bounded loss (K-modes)
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http://www.caip.rutgers.edu/~comanici/clusterDemo.html


Kernel Density Estimation



Mean-shift



K-means and MLE (maximum likelihood estimation)

“hard” 
K-means

multi-variate  (i.e.                    )

Gaussian distribution
(simple special case                  )



•     Soft clustering using Gaussian Mixture Model (GMM)

1

1

2

2

3

3

x

three Gaussian modes (K=3)
of the mixture PGMM

approximate 

optimization 
via EM algorithm

Towards soft clustering…
 Gaussian Mixture Models (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters  Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMM distribution: 

maximum likelihood
estimation of θ

(NLL loss)



Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

θ = (μ,σ,ρ)
M-step 

given    , compute          minimizing 

L (θ|S)    -  for any S  defines an upper bounds for Egmm(θ)

E-step

for given            
can find tight upper bound 



Graph representation

❑A graph is defined as a tuple G = (V, E)

❑where V is a set of nodes

❑and E is a set of edges

❑An example graph with 6 nodes and 7 edges



Minimum Cut

❑ In many applications it is desired to find the cut with 

minimum cost: minimum cut

❑ Well studied problem in graph theory, with many 

applications

❑ There exists efficient algorithms for finding minimum cuts



Normalized Cut

❑Normalize cut cost by volume of clusters

❑Compute the cut cost as a fraction of the total edge 

connections to all nodes in the graph



Summary of Normalized cut algorithm

 Given a set of features, construct a weighted graph by 
computing weight on each edge and then placing the data 
into W and D.

 Solve (D-W)x=λDx for eigen vectors with the smallest 
eigenvalues.

 Use the eigen vector corresponding to the second smallest 
eigenvalue to bipartition the graph into two groups.

 Recursively repartition the segmented parts if necessary.



Toward Kernel K-means

(Basic K-means)

(Kernel K-means)

input space feature space

embedding



Explicit Kernel     Implicit Embedding

just  plug-in
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kernel K-means or average association

S1

S3

S2

“self-association” of cluster Sk



K-means 

kernel K-means
make data more complex 

probabilistic K-means
make models more complex 

input space feature space

embedding



“cut” for Sk

S1

S3

S2

S1

S3

S2

“self-association” for Sk

Other kernel (graph) clustering objectives

Average Association Average Cut



kernel (graph) clustering objectives

▪ Average Cut ▪ Average Association

▪ Normalized Cut ▪ Normalized Association

normalization



Dimensionality Reduction



Motivation for Dimensionality Reduction





Covariance
• Variance and Covariance:

• Measure of the “spread” of a set of points around their center of mass(mean)

• Variance:
• Measure of the deviation from the mean for points in one dimension

• Covariance:
• Measure of howmuch each of the dimensionsvary from the mean with

respect to eachother

• Covariance is measuredbetweentwo dimensions

• Covariance seesif there is a relation betweentwo dimensions

• Covariance betweenone dimension is the variance



Principal ComponentAnalysis

Input:

Set of basisvectors:

Summarize a D dimensional vector Xwith Kdimensional 

feature vector h(x)





Neural Network



Neural Unit

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights

Input layer

Weighted sum

Non-linear activation function

Output value

bias



Multi-layer perceptron

Bias 
vector

Weight 
matrix

Example of Multi Layer Perceptron (MLP)



Activation function

61

tanh ReLU
Rectified Linear Unit

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesus the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes the resulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networkswe’ ll reserve y to

mean thefinal output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesustheoutput of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows afinal schematic of abasic neural unit. In this example the unit

takes3 input values x1,x2, and x3, and computes aweighted sum, multiplying each

valueby aweight (w1, w2, andw3, respectively), addsthemtoabiastermb, and then

passestheresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputsx1, x2, and x3 (and abiasb that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networkswe’ ll reserve y to

mean thefinal output of theentirenetwork, leaving a astheactivation of an individual node.

Let’swalk through an example just to get an intuition. Let’ssuppose wehavea

unit with thefollowing weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would thisunit do with thefollowing input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y= s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e−0.87
= .70

In practice, thesigmoid isnot commonly used asan activation function. A function

that isvery similar but almost alwaysbetter is thetanh function shown in Fig. 7.3a;tanh

tanh isavariant of thesigmoid that ranges from -1 to +1:

y=
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU

when z ispositive, and 0 otherwise:

y= max(z,0) (7.6)

Most Common:
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- direction of (negative) gradient at point x=(x1,x2)  is direction 
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 
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Example: for a function of two variables

update equation for a point x=(x1,x2) 

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2) 

Stop at a local minima where 



x

How to Set Learning Rate ?

• If   too large, may 
overshoot the local 
minimum and possibly 
never even converge

L(x)

x

• If   too small, too many 
iterations to converge

x(2) x(1)x(4) x(3)

L(x)



Variable Learning Rate

k = 1  

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1 

If desired, can change learning rate  at each iteration

k = 1  

x(1) = any initial guess

choose  

while ||L(x(k))|| > 

 choose (k) 

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1 

fixed α 

gradient descent
variable α 

gradient descent



Learning Rate

• Monitor learning rate by looking at how fast the 
objective function decreases

L(x)

number of iterations

          or time

very high learning rate

high learning rate

low learning rate

good learning rate



Computing Derivatives: SmallExample

x

y

z

q=x+y

f=qz

-2

5

-4

3

-12

∂x ∂y ∂z

∂f ∂f ∂f
, ,

• Small network f(x,y,z) = (x+y)z

• Rewrite using q=x+y ⇒ f(x,y,z) =qz

• Want

∂f

∂f
=1

∂q

∂f
= z=−4

∂x ∂q ∂x

∂f
=
∂f ∂q

=−4

4
∂y ∂q ∂y

∂f
=
∂f ∂q

=−

∂z

∂f
=q=3

∂
• for each edge, with respect to the main variable at edge origin

• using chain rule with respect to the variable at edgeend, if needed

• Compute ∂f from the end backwards

chain rule for f(y(x))

∂f
=
∂f ∂y

∂x ∂y ∂x



Computing Derivatives: Vector Notation

∂xj

∂fi

• has m rows and n columns

• has in row i, column j

• Let f(x): Rn→Rm,

• x is n-dimensional vector and output f(x) is m-dimensional vector

• Jacobian matrix



Computing Derivatives: Vector Notation

• f(x): Rn→Rm and g(x): Rk→Rn

• f(g(x)): Rk→Rm

• Chain rule for vector functions

∂f
=
∂f ∂g

∂x ∂g∂x

Jacobian matrices
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