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CSE 176 Introduction to Machine Learning

Midterm Review
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Different Al systems

Deep learning Example:
Shallow
Example: autoencoders
MLPs

Example: Example:
Logistic Knowledgg
regression bases

Representation learning

Machine learning




Major Types of machine learning

LISupervised learning: Given pairs of input-output, learn to
map the input to output
Llimage classification
[ISpeech recognition
[IRegression (continuous output)

L1Unsupervised learning: Given unlabeled data, uncover the
underlying structure or distribution of the data
L1Clustering
LIDimensionality reduction

[IReinforcement learning: training an agent to make decisions
within an environment to maximize a cumulative reward
[1Game playing (e.g., AlphaGo)
[JRobot control
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Matrix inverse

For a 2x2 matrix:

dThe Iinverse Is ;

—C a

_ 1 d —b
QQuiz: find the invA " = ;- ( )

JAnswer:

3 —1 1 2 2 1
A=[2 0 2]’3‘!011]
2 0]
3 -1 1 50
T _ ] _
AB_[2 0 2] 21 [62]
1 1)
_ 2 0] 2 0
(AB) 1:5-210-6'[—6 5 _110°[—6 5]=




Norms

« Used for measuring the size of a vector
 Norms map vectors to non-negative values

* Norm of vector x=[x,,...x,JT IS distance from origin to x
—Itis any function f that satisfies:

f(z)=0=z=0
flx+y)< f(a:j+ f (y) Triangle Inequality
VoaeR f(aaz]:‘a‘f(a:)
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LP Norm
e Definition:

X.
i

Bl (2
—L2Norm @

1
P T’
» Called Euclidean norm
— Simply the Euclidean distance
(x?+x§)

between the origin and the point x X X,

— written simply as || x| | x
— Squared Euclidean normis same as x™x

— L1 Norm
« Sum of absolute value for each x;

— L~ Norm Ha:‘ Lo - m_aa?‘:ltz.‘ » Called max norm
{4
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Eigendecomposition

* Suppose that matrix Ahas n linearly
iIndependent eigenvectors {v,.. vV} with
eigenvalues {A\4,..,An}

« Concatenate eigenvectors to form matrix V
« Concatenate eigenvalues to form vector
A=[A1,..,M0]
« Eigendecomposition of Ais given by
A=Vdiag(M)V!
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Chain rule of conditional probability

* Any probabillity distribution over many variables can
be decomposed into conditional distributions over

only one variable

P(X(l),---ax(”)) = P( (1))H 2p(X(z) |X “TX(i—l))

* An example with three variables

Plabe]l] = Pia|he)lP{hme)
Pihey = Plb|s)Ple
Plab,el] = P(a|b.e)P(b | giPlc]
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Independence and conditional independence

* Independence: |xly

— Two variables x and y are independent if their probability
distribution can be expressed as a product of two factors,
one involving only x and the other involving only y

Vxex,yey, px=z,y=y) =px=z)p(y =y)
» Conditional Independence: |xLly |z

— Two variables x and y are independent given variable z, if
the conditional probability distribution over x. andy
factorizes in this way for every z

VxeEx,y€y,z€z, px=x,y=y|lz=2)=px=z|z=2)p(y=y|z==2



Bayes’s rule

dBayes' theorem (alternatively Bayes' law or Bayes'
rule), named after Thomas Bayes, describes
the probability of an event, based on prior knowledge of
conditions that might be related to the event.

For example, if the risk of health problems is known to
Increase with age, Bayes' theorem allows the risk to an
Individual of a known age to be assessed more
accurately by conditioning it relative to their age.

P(ANB) P(A)=xP(B|4)
P(B) P(B)

P(A|B) =
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https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)
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Supervised Learning: Classification and
Regression



Training/Testing Phases lllustrated

Tralning
fﬁaining examplea JRIG
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Loss function

LITraining dataset of | pairs of input/output examples

{th yn}nl\i]_

LlLoss function or cost function measures how bad model is:

wW* = arg miny, ,L(y,, h(w,x,))

[10 is also acommon notation for weights




Supervised ML algorithm

1. A model h(x; ®) (hypothesis class) with parameters ©. A particular value of © determines
a particular hypothesis in the class.

Ex: for linear models, @ = slope w1 and intercept wg.

2. A loss function L(-,-) to compute the difference between the desired output (label) y,, and
our prediction to it h(x,;©). Approzimation error (loss):

N
E(©;X) = Z L(y,, h(x,; ®)) = sum of errors over instances

n=1
Ex: 0/1 loss for classification, squared error for regression.

3. An optimization procedure (learning algorithm) to find parameters ®* that minimize the
€rror:

O* = argmin E(O; X)
©




Linear classifier example: perceptron

f(w,x!)
')
X = label
weighted binary
sum decision

perceptron for binary classification of 2D feature vector




Underfitting — Overfitting

underfitting “just right” overfitting

1 high training error I low training error 1 low training error
[J high test error O lowtesterror [J high test error




Model selection and generalization

dMachine learning problems (classification, regression
and others) are typically ill-posed : the observed data is
finite and does not uniguely determine the classification
or regression function.

dHow to choose the right inductive bias, in particular the
right hypothesis class? This is the model selection
problem.
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Cross Validation

dTraining set:
Used to train, i.e., to fit a hypothesis h € H..
JOptimize parameters of h given the model structure and
hyperparameters.
dUsually done with an optimization algorithm (the learning algorithm).

1 Validation set:
dUsed to minimize the generalization error.
L Optimize hyperparameters or model structure.
dUsually done with a “grid search”. Ex: try all values of H € {10, 50,
100} and A € {10-5, 10-3, 10-1}.
dTest set:
dUsed to report the generalization error.
dWe optimize nothing on it, we just evaluate the final model on it
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KNN Classifier



K nearest neighbor algorithm

(A Nearest neighbor often instable (noise)

JFor a test input x, assigh the most common label amongst
its k most similar training inputs




Effect of K

dWhich partition do you prefer? Why?

k=1
5 .
T 1 . .
g TR
T7
By
1. ®
o9 o
o°
S, = °,
. AT
o;' .:
0 -i el

L7

k=3
o8
a-,“.o
.'.-
S
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S o0 2
.‘ﬁ.
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1

K controls the degree of smoothing.

dWhat if K=N(number of data points)?

7

k=31
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Choosing K

dHow should we choose K?
Select K with highest test accuracy

(dCan we simply split to training and testing set?

dSolution: split data into training, validation and test sets
dTraining set: compute nearest neighbour
Validation set: optimize hyperparameters such as K
Test set: measure performance




[4] The table below shows the test set for a 1-nearest-neighbor classifier that
uses Manhattan distance, i.e., the distance between two points at coordinates p
and q is |p — g|. The only attribute, X, is real-valued, and the label, Y, has two
classes, 0 and 1. Suppose a subset containing n < 8 examples is selected from this
set to train the classifier, and the accuracy of the classifier is 100 percent when
tested on this set (with all 8 examples). What is the smallest possible value for n?
In case of ties in distance, use the example with smallest X value as the neighbor.

X 5 4 -1 1 4 8
Y 0 1 0 0

A 2

B. 3

C. 4

D. 5

E. 6




KNN for high-dimensional data

(dCan we use KNN classifier for high-dimensional data?

JAssumption for KNN classifier to work:
K nearest neighbors are nearby

JAre K nearest neighbors nearby for d>>0?
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K-means Clustering: Algorithm

e |nitialization step
1. pick K cluster centers randomly
2.  assign each sample to its closest center

e |teration steps

_ _1
1. compute centers as cluster means L = 1SK] z : fp

2.  re-assign each sample to the closest mean pes”
. Iterate until clusters stop changing



K-means objective

[ : extra parameters (means)




Squared distance as log-likelihood

AssumeK=2, Q = SU S

single Gaussian of fixed covariance
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K-means as variance clustering criteria

Sk

both formulas can be written as

E(S) = Z S%| var(S*)
k=1

sample variance: var(S*) :|s_1k| Z” f,— 1 I° = 2|51k|2 Z” fo— 1, I°

pesS” pgeSk



[4] You want to cluster 7 points into 3 clusters using the k-Means Clustering
algorithm. Suppose after the first iteration, clusters C4, C2 and Cs contain the
following two-dimensional points:

C+ contains the 2 points: {(0,6), (6,0)}

C. contains the 3 points: {(2,2), (4,4), (6,6)}

Cs contains the 2 points: {(5,5), (7,7)}
What are the cluster centers computed for these 3 clusters?

C1: (3,3), C2: (4,4), Cs: (6,6)

C1: (3,3), Cz: (6,6), Cs: (12,12)
C1: (6,6), C2: (12,12), Cs: (12,12)
C1:(0,0), C2: (48,48), Cs: (35,35)
None of these

moow»




(generalization)
Distortion Clusterin

can use different “distortion” measures

K
B = S ST - wella

k=1 peSy
examples of distortion measure || - |l interpretation of parameters
H . ”d — H . H2 Squared K'means
L, norm
I -lla =1+ absote K-medians
L, norm
I-lla = 1—exp(—[-[I*) K-modes

NOTE: besides changing the distortion measure, there are different generalizations of K-means
requiring other interpretations of SSE objective



Mean Shift

[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

12—

10

U0 e

o va—
1. Initialize random seed, and fixed window

2. Calculate center of gravity ‘X’ of the window (the“mean”
3. Translate the search window to the mean
4. Repeat Step 2 until convergence

Iterative
Mode Search



Mean Shift as K-modes

[Salah, Mitche, Ben-Ayed 2010]

> >t sl Sreic e (b
Kllg ‘Ils + quadratic absolute bounded
1 pes* (K-means) (K-medians) (K-modes)

Mean-shift segmentation relates to
distortion clustering with a bounded loss (K-modes)

N T
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Mean shift trajectories


http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Kernel Density Estimation

Kernel density estimate with bandwidth o: a mixture having one component for each data point:

Zp(xmp(n NDZ () xew.

Usually the kernel K is Gaussian: K (*2>=) = (27) P/ exp (—3|(x — xn)/cr||2).




Mean-shift

Mean-shift algorithm: starting from an initial value of x, it iterates the following expression:

X 3 n|x)x, where n|x) = p(x|n)p(n) _ €xp (—%H(x - xn)/UH2) )
— ;p( ‘ ) p( | ) p(x) 2521 exp (_%H(X B Xn*)/J”z)

E:zl p(n|x)x, can be understood as the weighted average of the N data points using as
weights the posterior probabilities p(n|x). The mean-shift algorithm converges to a mode of
p(x). Which one it converges to depends on the initialization. By running mean-shift starting
at a data point x,,, we effectively assign x,, to a mode. We repeat for all points x;,...,Xy.




K-means and MLE (maximum likelihood estimation)

K
thard”  p(s ) = <303 log PUy | )

K-means P gyt

multi-variate (i.e. ©, 1t € RN 1 ||37 - M”z

Gaussian distribution P(z|p) = \/(QWO.Z)N OXp 2 g2

(simple special case Y = o2 1)




Towards soft clustering...
Gaussian Mixture Models (cmm)

* Soft clustering using Gaussian Mixture Model (GMM)

- no “hard” assighments of points to K distinct (Gaussian) clusters Sk
- all points are used to estimate parameters of one complex K-mode distribution (GMM)

opumigation —— Egmm (0) - Z log Pymm (zp | 0)
via EM algorithm o maximum likelihood
; ‘-. estimation of 0
R three Gaussian modes (K=3) (NLL loss)

of the mixture Pgym

GMM distribution: Py (2] 0) = Z pr P(x | px, or)



Expectation-Maximization (EM)

GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

B (0) = — 3 log Py 16) = —3 log (zw(wk,m)
P p k

L(6]S5) for given 6 = (i1, 5, p)
. 7 can find tight upper bound

prP(@pl ik, Or)
Eomm = - =
gmm (0) > e P (@i 1)

E-step

M-step |

given S, compute 0z minimizing L(0]5)

> 0= (w,0,p)

L (6]S) - for any S defines an upper bounds for E ()

IA

-2 (255) logpr = 3> Sy log Play| pyon) = 3 H(S))
k p kE p p



Graph representation

QA graph is defined as a tuple G = (V, E)
where V is a set of nodes
Uand E is a set of edges

aAn example graph with 6 nodes and 7 edges

b)

Adjacency
matrix, A

Node
data, X
D x N




Minimum Cut

a In many applications it is desired to find the cut with
minimum cost: minimum cut

0 Well studied problem in graph theory, with many
applications
a There exists efficient algorithms for finding minimum cuts

]
\ \“7

A 3 _
44 .z

| 4
A\ SAN

e ~1
A B

cut{ A, By= > wiu,v)

e e



Normalized Cut

aNormalize cut cost by volume of clusters

0 Compute the cut cost as a fraction of the total edge
connections to all nodes in the graph

cutl A, #) . cufl A, B

Neun( A, By =
assoc{ A V) assoc(B, V)

better cul —=




Summary of Normalized cut algorithm

O Given aset of features, construct aweighted graph by

computing weight on each edge and then placing the data
into WandD.

O Solve (D-W)x=ADx for eigen vectors with the smallest
eigenvalues.

O Usethe eigen vector corresponding to the second smallest
eigenvalue to bipartition the graph into two groups.

O Recursively repartition the segmented parts if necessary.




Toward Kernel K-means

ES.p)= ) > Ifp—ml?

k=1 peS*

K

En(S,i) = > > lof,) — ful?

k=1 pESk

input space feature space

(Basic K-means)

(Kernel K-means)



Explicit Kernel & Implicit Embedding

just plug-in

e = D P(F)
QGSk

k=1pesk

K
Br(S, i) = Y Y o(f) — i

equivalent

Ex(S) = — Z quesk k(fp, fq)

|S*]
k=1



kernel K-means or average association

“self-association” of cluster SK




K-means

Z”fp_#s||2+2”fp_ﬂ§”2 _

g — res Y

probabilistic K-means kernel K-means
make models more complex make data more complex

=Y WPr(flos) = > WmPr(fylds) | D Ie(f) —asl®+ ) é(f) — il

pES peS PES peS

embedding

5 4 a3 a2 4 p 1 T 3 4 5

input space feature space




Other kernel (graph) clustering objectives

Average Association Average Cut

“self-association” for SK

“cut” for SK




kernel (graph) clustering objectives

=  Average Cut = Average Association

K Ic’ k k' k

z S¥A(1-5%) E g Z S¥AS

— 118k — 1/5%

= Normalized Cut = Normalized Association
SK A (1- 8% Z S ASK

sk gk

normalization d = A]_
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Motivation for Dimensionality Reduction

5555555&@&’&&& R



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector p and covariance matrix X
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y= Az —p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors



Covariance

« Variance and Covariance:
» Measure of the “spread” of a set of points around their center of mass(mean)

* Variance:
« Measure of the deviation from the mean for pointsin one dimension

 Covariance:

» Measure of how much each of the dimensions vary from the mean with
respect to each other

» Covariance is measured between two dimensions
» Covariance seesif thereis arelation between two dimensions
» Covariance between one dimension is the variance




Principal Component Analysis

Input: x € RP: D = {x1,...,xn}
Set of basis vectors: ujp,...,Uxk

Summarize a D dimensional vector Xwith Kdimensional
feature vector h(x)

U] - X
U - X

h(x) =




You are given a design matrix X = :; 2 . Let’s use PCA to reduce the dimension from 2 to 1.
7T =3

(1) [6 pts] Compute the covariance matrix for the sample points. (Warning: Observe that X is not centered.)
Then compute the unit eigenvectors, and the corresponding eigenvalues, of the covariance matrix. Hint: If
you graph the points, you can probably guess the eigenvectors (then verify that they really are eigenvectors).

r ~ o~ ~a 1
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Neural Unit

Output value }’

Non-linear activation function

Weighted sum

Weights  w,
Input layer  x;



Multi-layer perceptron

Bias

vector /30 c R4 G /61 c RQ ,62 c RS ,33 c R2

(£) (=) ()
i
(S /0 S

(&)
(S
)

WElght 0 Q, € R2X4 Q. c R3><2
matrix Hidden Hidden Hidden
Input, x
layer, h layer, ho layer, hs
D,L' =3 D1 =4 D2 == D3 —

Example of Multi Layer Perceptron (MLP)




tanh(z)

y

Activation function

Most Common:

Lo 10
— nZ
y= ¢ y= max(z 0)
0.5 —Z >
&+ e -
0.0 % 0
-0.5 5
—1.075 5 0 5 10 ~1%% -5 0 5 10
tanh RelLU

Rectified Linegr Unit
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Multi-variate functions

Gradient Descent

Example: for a function of two variables
- L(Xq,%;)

»

AL
85[32

i L

- direction of (negative) gradient at point x=(x,,x,) is directiog
of the steepest descent towards lower values of function

- magnitude of gradient at x=(x;,x,) gives the value of



Multi-variate functions

Gradient Descent

Example: for a function of two variables
- L(Xq,%;)

»

...................................................
-------------------------------------
-----------
"aay
ey,
"y
"~
0
.
‘e

. Xy

update equation for a point X=(x;,X,)

x' =x—aVL

OF
— 8171
OF

ds

N,

0

Stop at a local minima where VL



How to Set Learning Rate o.?

x' =x—aVL
If o too small, too many L(x) 1
iterations to converge
AN
X
If o too large, may L(X) 1

overshoot the local
minimum and possibly
never even converge




Variable Learning Rate

If desired, can change learning rate a at each iteration

k=1 k=1
x1) = any initial guess x) = any initial guess
choose 0, € choose g
while a||VL(xV)|| > & 7 | while of|VLxW¥)|| > £

x(+1) = x (K - o VL(x®)) choose al¥

K=k+ 1 x(+1) = x (K - oK) VL(x*)

k=k+1
fixed o variable a

gradient descent gradient descent M



Learning Rate
e Monitor learning rate by looking at how fast the

objective function decreases

L(x) very high learning rate

low learning rate

high learning rate

wning rate




Computing Derivatives: Small Example

Small network f(x,y,z) = (x+y)z
. . hain rule for f
Rewrite using q=x+y > f(X,y,2)=0z chain rule for t(y (x))
Want a a o oy
ox' oy’ oz OX 0Y OX
Compute % from the end backwards

 for each edge, with respect to the main variable at edge origin
using chain rule with respect to the variable at edge end, if needed




Computing Derivatives: Vector Notation

* Let f(x): Rr—>RmM,
« Xisn-dimensional vector and output f(x) is m-dimensional vector

* Jacobian matrix

* hasm rows and n columns
* has ﬂ In row I, column |
X

)




Computing Derivatives: Vector Notation
« f(X): R>RMand g(x): R<—Rn

* f(g(x)): Rk—Rm

 Chain rule for vector functions

of _of
X g X

|1

Jacobian matrices




(10 points) Consider boolean logical operators such as AND, OR, and XOR,

AND OR XOR
x1 x2|y x1 x2|y x1 x2|y
O 0 |0 O 0 (0 O 0 |0
O 1 |0 0 1 |1 O 1 |1
1 0 |0 1 0 |1 1 0 |1
1 1 |1 1 11 1 1|0

(a) (5 points) Can we implement OR using perception? If yes, show the corresponding
perceptron network. If no, explain why.

Solution:

(b) (5 points) Can we implement XOR, using perception? If yes, show the correspond-
ing perceptron network. If no, explain why.

Solution:



(10 points) This problem explores computing derivatives on composite functions. Con-
sider the function:

y = explexp[z] + exp|z]*] + sin[exp[z] + exp[z]?].

We can break this down into a series of intermediate computations so that:

fi = explz]
foo= fi

fs = h+tf
fa = explfs]
fs = sin[f3]
y = fatfs

Compute the derivatives in order using the chain rule of gradients in each case to make
use of the derivatives already computed.

Oy Oy Oy Oy Oy and@
5f5’5f4’3f3’af2’3f1’ ox
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