
CSE 176 Introduction to Machine Learning
Midterm Review

Different AI systems

Major Types of machine learning

Supervised learning: Given pairs of input-output, learn to
map the input to output
Image classification

Speech recognition

Regression (continuous output)

Unsupervised learning: Given unlabeled data, uncover the
underlying structure or distribution of the data
Clustering

Dimensionality reduction

Reinforcement learning: training an agent to make decisions
within an environment to maximize a cumulative reward

Game playing (e.g., AlphaGo)

Robot control

Linear Algebra, Probability and Statistics

Matrix inverse

❑For a 2x2 matrix:

❑The inverse is :

❑Quiz: find the inverse of ABT

❑Answer:

Norms

• Used for measuring the size of a vector

• Norms map vectors to non-negative values

• Norm of vector x=[x1,..,xn]T is distance from origin to x

– It is any function f that satisfies:

Slide from S. Srihari

Lp Norm

• Definition:

– L2 Norm

• Called Euclidean norm
– Simply the Euclidean distance

between the origin and the point x

– written simply as | |x | |

– Squared Euclidean norm is same as xTx

• Sum of absolute value for each xi

– L∞ Norm • Called max norm

Slide from S. Srihari

– L1 Norm

Eigendecomposition

• Suppose that matrix Ahas n linearly

independent eigenvectors {v(1),..,v(n)} with

eigenvalues {λ1,..,λn}

• Concatenate eigenvectors to form matrix V

• Concatenate eigenvalues to form vector

λ=[λ1,..,λn]

• Eigendecomposition of A is given by

A=Vdiag(λ)V-1

Slide from S. Srihari

Chain rule of conditional probability

• Any probability distribution over many variables can

be decomposed into conditional distributions over

only one variable

• An example with three variables

Slide from S. Srihari

Independence and conditional independence

• Independence:

– Two variables x and y are independent if their probability

distribution can be expressed as a product of two factors,

one involving only x and the other involving only y

• Conditional Independence:

– Two variables x and y are independent given variable z, if

the conditional probability distribution over x. and y

factorizes in this way for every z

Slide from S. Srihari

Bayes’s rule

❑Bayes' theorem (alternatively Bayes' law or Bayes'

rule), named after Thomas Bayes, describes

the probability of an event, based on prior knowledge of

conditions that might be related to the event.

❑For example, if the risk of health problems is known to

increase with age, Bayes' theorem allows the risk to an

individual of a known age to be assessed more

accurately by conditioning it relative to their age.

Slide from S. Srihari

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Event_(probability_theory)

Supervised Learning: Classification and
Regression

Training/Testing Phases Illustrated

label

prediction

training

labels
training examples

Training

Training

feature

vectors

feature

vector

Testing

test Image

Learned

model h

Learned

model h

Loss function

Training dataset of I pairs of input/output examples

Loss function or cost function measures how bad model is:

𝚯 is also a common notation for weights

{xn, yn}N
n = 1

w* = arg minw ΣnL(yn, h(w,xn))

Supervised ML algorithm

Linear classifier example: perceptron

Underfitting→Overfitting

underfitting “just right” overfitting

 high training error

 high test error

 low training error

 low test error

 low training error

 high test error

Model selection and generalization

❑Machine learning problems (classification, regression

and others) are typically ill-posed : the observed data is

finite and does not uniquely determine the classification

or regression function.

❑How to choose the right inductive bias, in particular the

right hypothesis class? This is the model selection

problem.

Cross Validation

❑Training set:
❑Used to train, i.e., to fit a hypothesis h ∈ Hi.
❑Optimize parameters of h given the model structure and

hyperparameters.
❑Usually done with an optimization algorithm (the learning algorithm).

❑ Validation set:
❑Used to minimize the generalization error.
❑Optimize hyperparameters or model structure.
❑Usually done with a “grid search”. Ex: try all values of H ∈ {10, 50,

100} and λ ∈ {10−5, 10−3, 10−1}.

❑Test set:
❑Used to report the generalization error.
❑We optimize nothing on it, we just evaluate the final model on it

KNN Classifier

K nearest neighbor algorithm

❑Nearest neighbor often instable (noise)

❑For a test input x, assign the most common label amongst
its k most similar training inputs

Effect of K

❑Which partition do you prefer? Why?

❑𝐾controls the degree of smoothing.

❑What if K=N(number of data points)?

𝑘 = 1 𝑘 = 3 𝑘 = 31

Choosing K

❑How should we choose K?
❑Select K with highest test accuracy

❑Can we simply split to training and testing set?

❑Solution: split data into training, validation and test sets
❑Training set: compute nearest neighbour

❑Validation set: optimize hyperparameters such as K

❑Test set: measure performance

KNN for high-dimensional data

❑Can we use KNN classifier for high-dimensional data?

❑Assumption for KNN classifier to work:
❑K nearest neighbors are nearby

❑Are K nearest neighbors nearby for d>>0?

Clustering

K-means Clustering: Algorithm

• Initialization step

1. pick K cluster centers randomly

2. assign each sample to its closest center

• Iteration steps

1. compute centers as cluster means

2. re-assign each sample to the closest mean

• Iterate until clusters stop changing




=
k

k

Sp

pSk f
||

1

K-means objective

=),(SE + +

(SSD)
: extra parameters (means)

Squared distance as log-likelihood

single Gaussian

single Gaussian of fixed covariance
Assume K=2,

K-means as variance clustering criteria

k

Sk

Sk

both formulas can be written as




−=−=
k

k

k

k

Spq

qpS
Sp

kpS

k fffS 2

||2

12

||

1 ||||||||)var(2sample variance:

qf

pf

pf

NOTE: besides changing the distortion measure, there are different generalizations of K-means

 requiring other interpretations of SSE objective

can use different “distortion” measures

(generalization)

Distortion Clustering

K-modes

K-means

K-medians

squared
L2 norm

absolute
L2 norm

interpretation of parameters μkexamples of distortion measure d|||| 

Mean Shift
[Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]

1. Initialize random seed, and fixed window

2. Calculate center of gravity ‘x’ of the window (the“mean”)

3. Translate the search window to the mean

4. Repeat Step 2 until convergence

It
er

a
ti

v
e

M
o
d

e
S

ea
rc

h

x xo x

mode

Mean Shift as K-modes
[Salah, Mitche, Ben-Ayed 2010]

img005

Mean-shift segmentation relates to
distortion clustering with a bounded loss (K-modes)


= 

−
K

k Sp
dkp

k

f
1


: quadratic absolute bounded

 (K-means) (K-medians) (K-modes)
d|||| 

http://www.caip.rutgers.edu/~comanici/clusterDemo.html

Kernel Density Estimation

Mean-shift

K-means and MLE (maximum likelihood estimation)

“hard”
K-means

multi-variate (i.e.)

Gaussian distribution
(simple special case)

• Soft clustering using Gaussian Mixture Model (GMM)

1

1

2

2

3

3

x

three Gaussian modes (K=3)
of the mixture PGMM

approximate

optimization
via EM algorithm

Towards soft clustering…
 Gaussian Mixture Models (GMM)

- no “hard” assignments of points to K distinct (Gaussian) clusters Sk

- all points are used to estimate parameters of one complex K-mode distribution (GMM)

GMM distribution:

maximum likelihood
estimation of θ

(NLL loss)

Expectation-Maximization (EM)
GMM estimation - optimization of ML objective (sum of Negative Log Likelihoods, a.k.a. NLL loss)

θ = (μ,σ,ρ)
M-step

given , compute minimizing

L (θ|S) - for any S defines an upper bounds for Egmm(θ)

E-step

for given
can find tight upper bound

Graph representation

❑A graph is defined as a tuple G = (V, E)

❑where V is a set of nodes

❑and E is a set of edges

❑An example graph with 6 nodes and 7 edges

Minimum Cut

❑ In many applications it is desired to find the cut with

minimum cost: minimum cut

❑ Well studied problem in graph theory, with many

applications

❑ There exists efficient algorithms for finding minimum cuts

Normalized Cut

❑Normalize cut cost by volume of clusters

❑Compute the cut cost as a fraction of the total edge

connections to all nodes in the graph

Summary of Normalized cut algorithm

 Given a set of features, construct a weighted graph by
computing weight on each edge and then placing the data
into W and D.

 Solve (D-W)x=λDx for eigen vectors with the smallest
eigenvalues.

 Use the eigen vector corresponding to the second smallest
eigenvalue to bipartition the graph into two groups.

 Recursively repartition the segmented parts if necessary.

Toward Kernel K-means

(Basic K-means)

(Kernel K-means)

input space feature space

embedding

Explicit Kernel  Implicit Embedding

just plug-in




=
k

k

Sq

qSk f)(ˆ
||

1 

equivalent

kernel K-means or average association

S1

S3

S2

“self-association” of cluster Sk

K-means

kernel K-means
make data more complex

probabilistic K-means
make models more complex

input space feature space

embedding

“cut” for Sk

S1

S3

S2

S1

S3

S2

“self-association” for Sk

Other kernel (graph) clustering objectives

Average Association Average Cut

kernel (graph) clustering objectives

▪ Average Cut ▪ Average Association

▪ Normalized Cut ▪ Normalized Association

normalization

Dimensionality Reduction

Motivation for Dimensionality Reduction

Covariance
• Variance and Covariance:

• Measure of the “spread” of a set of points around their center of mass(mean)

• Variance:
• Measure of the deviation from the mean for points in one dimension

• Covariance:
• Measure of howmuch each of the dimensionsvary from the mean with

respect to eachother

• Covariance is measuredbetweentwo dimensions

• Covariance seesif there is a relation betweentwo dimensions

• Covariance betweenone dimension is the variance

Principal ComponentAnalysis

Input:

Set of basisvectors:

Summarize a D dimensional vector Xwith Kdimensional

feature vector h(x)

Neural Network

Neural Unit

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Weights

Input layer

Weighted sum

Non-linear activation function

Output value

bias

Multi-layer perceptron

Bias
vector

Weight
matrix

Example of Multi Layer Perceptron (MLP)

Activation function

61

tanh ReLU
Rectified Linear Unit

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesus the output of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit

takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each

valueby aweight (w1, w2, and w3, respectively), addsthem to abiasterm b, and then

passes the resulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and abias b that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networks we’ ll reserve y to

mean thefinal output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a

unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e− 0.87
= .70

In practice, the sigmoid is not commonly used as an activation function. A function

that is very similar but almost alwaysbetter is the tanh function shown in Fig. 7.3a;tanh

tanh is avariant of the sigmoid that ranges from -1 to +1:

y =
ez− e− z

ez+ e− z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as xReLU

when x ispositive, and 0 otherwise:

y = max(x,0) (7.6)

7.1 • UNITS 3

Substituting Eq. 7.2 into Eq. 7.3 givesustheoutput of aneural unit:

y = s (w·x+ b) =
1

1+ exp(− (w·x+ b))
(7.4)

Fig. 7.2 shows afinal schematic of abasic neural unit. In this example the unit

takes3 input values x1,x2, and x3, and computes aweighted sum, multiplying each

valueby aweight (w1, w2, andw3, respectively), addsthemtoabiastermb, and then

passestheresulting sum through asigmoid function to result in anumber between 0

and 1.

x1 x2 x3

y

w1 w2 w3

∑

b

σ

+1

z

a

Figure7.2 A neural unit, taking 3 inputsx1, x2, and x3 (and abiasb that werepresent asa

weight for an input clamped at +1) and producing an output y. We include some convenient

intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In

this case the output of the unit y is the same as a, but in deeper networkswe’ll reserve y to

mean thefinal output of theentirenetwork, leaving a astheactivation of an individual node.

Let’swalk through an example just to get an intuition. Let’ssuppose wehavea

unit with thefollowing weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would thisunit do with thefollowing input vector:

x = [0.5,0.6,0.1]

Theresulting output y would be:

y= s (w·x+ b) =
1

1+ e− (w·x+ b)
=

1

1+ e− (.5⇤.2+ .6⇤.3+ .1⇤.9+ .5)
=

1

1+ e−0.87
= .70

In practice, thesigmoid isnot commonly used asan activation function. A function

that isvery similar but almost alwaysbetter is thetanh function shown in Fig. 7.3a;tanh

tanh isavariant of thesigmoid that ranges from -1 to +1:

y=
ez− e−z

ez+ e−z
(7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-

tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU

when z ispositive, and 0 otherwise:

y= max(z,0) (7.6)

Most Common:

5-62

- direction of (negative) gradient at point x=(x1,x2) is direction
of the steepest descent towards lower values of function L

Example: for a function of two variables

- magnitude of gradient at x=(x1,x2) gives the value of the slope

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

5-63

Example: for a function of two variables

update equation for a point x=(x1,x2)

Multi-variate functions

Gradient Descent

x1

x2

L(x1,x2)

Stop at a local minima where

x

How to Set Learning Rate ?

• If  too large, may
overshoot the local
minimum and possibly
never even converge

L(x)

x

• If  too small, too many
iterations to converge

x(2) x(1)x(4) x(3)

L(x)

Variable Learning Rate

k = 1

x(1) = any initial guess

choose , 

while ||L(x(k))|| > 

 x(k+1) = x (k) -  L(x(k))
 k = k + 1

If desired, can change learning rate  at each iteration

k = 1

x(1) = any initial guess

choose 

while ||L(x(k))|| > 

 choose (k)

 x(k+1) = x (k) - (k) L(x(k))
 k = k + 1

fixed α

gradient descent
variable α

gradient descent

Learning Rate

• Monitor learning rate by looking at how fast the
objective function decreases

L(x)

number of iterations

 or time

very high learning rate

high learning rate

low learning rate

good learning rate

Computing Derivatives: SmallExample

x

y

z

q=x+y

f=qz

-2

5

-4

3

-12

∂x ∂y ∂z

∂f ∂f ∂f
, ,

• Small network f(x,y,z) = (x+y)z

• Rewrite using q=x+y ⇒ f(x,y,z) =qz

• Want

∂f

∂f
=1

∂q

∂f
= z=−4

∂x ∂q ∂x

∂f
=
∂f ∂q

=−4

4
∂y ∂q ∂y

∂f
=
∂f ∂q

=−

∂z

∂f
=q=3

∂
• for each edge, with respect to the main variable at edge origin

• using chain rule with respect to the variable at edgeend, if needed

• Compute ∂f from the end backwards

chain rule for f(y(x))

∂f
=
∂f ∂y

∂x ∂y ∂x

Computing Derivatives: Vector Notation

∂xj

∂fi

• has m rows and n columns

• has in row i, column j

• Let f(x): Rn→Rm,

• x is n-dimensional vector and output f(x) is m-dimensional vector

• Jacobian matrix

Computing Derivatives: Vector Notation

• f(x): Rn→Rm and g(x): Rk→Rn

• f(g(x)): Rk→Rm

• Chain rule for vector functions

∂f
=
∂f ∂g

∂x ∂g∂x

Jacobian matrices

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Different AI systems
	Slide 5: Major Types of machine learning
	Slide 6
	Slide 7: Matrix inverse
	Slide 8: Norms
	Slide 9: Lp Norm
	Slide 10: Eigendecomposition
	Slide 11: Chain rule of conditional probability
	Slide 12: Independence and conditional independence
	Slide 13: Bayes’s rule
	Slide 14
	Slide 15: Training/Testing Phases Illustrated
	Slide 16: Loss function
	Slide 17: Supervised ML algorithm
	Slide 18
	Slide 19: Underfitting → Overfitting
	Slide 20: Model selection and generalization
	Slide 21: Cross Validation
	Slide 22
	Slide 23: K nearest neighbor algorithm
	Slide 24: Effect of K
	Slide 25: Choosing K
	Slide 26
	Slide 27: KNN for high-dimensional data
	Slide 28
	Slide 29: K-means Clustering: Algorithm
	Slide 30: K-means objective
	Slide 31: Squared distance as log-likelihood
	Slide 32
	Slide 33
	Slide 34: (generalization) Distortion Clustering
	Slide 35: Mean Shift [Fukunaga and Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002]
	Slide 36: Mean Shift as K-modes [Salah, Mitche, Ben-Ayed 2010]
	Slide 37: Kernel Density Estimation
	Slide 38: Mean-shift
	Slide 39: K-means and MLE (maximum likelihood estimation)
	Slide 40: Soft clustering using Gaussian Mixture Model (GMM)
	Slide 41
	Slide 42: Graph representation
	Slide 43: Minimum Cut
	Slide 44: Normalized Cut
	Slide 45: Summary of Normalized cut algorithm
	Slide 46: Toward Kernel K-means
	Slide 47: Explicit Kernel  Implicit Embedding
	Slide 48: kernel K-means or average association
	Slide 49
	Slide 50: Other kernel (graph) clustering objectives
	Slide 51: kernel (graph) clustering objectives
	Slide 52
	Slide 53: Motivation for Dimensionality Reduction
	Slide 54
	Slide 55: Covariance
	Slide 56: Principal Component Analysis
	Slide 57
	Slide 58
	Slide 59: Neural Unit
	Slide 60: Multi-layer perceptron
	Slide 61: Activation function
	Slide 62: Multi-variate functions Gradient Descent
	Slide 63: Multi-variate functions Gradient Descent
	Slide 64: How to Set Learning Rate ?
	Slide 65: Variable Learning Rate
	Slide 66: Learning Rate
	Slide 67: Computing Derivatives: Small Example
	Slide 68: Computing Derivatives: Vector Notation
	Slide 69: Computing Derivatives: Vector Notation
	Slide 70
	Slide 71

